Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attosecond Science Laboratory: Ultrafast Photography in Saudi Arabia

13.02.2015

Electrons cannot hide anymore – even in Saudi Arabia. On February 16th, 2015, the new ‘Attosecond Science Laboratory’ will be inaugurated at the King Saud University in Riyadh. It is the first attosecond laboratory in the whole Arabic world and a product of the collaboration between the Ludwig Maximilians University (LMU) Munich, the Max Planck Institute for Quantum Optics (MPQ) in Garching, and the King Saud University (KSU) in Riyadh. Researchers from the three institutions will use the new facility to investigate electrons in motion.

Electrons, once excited, move in atomic systems within attoseconds. One attosecond is merely a billionth of a billionth of a second (10^-18 seconds). To take freeze-frame snapshots of such fast movements, the exposure time must be correspondingly brief.


The new "Attosecond Science Laboratory" in Riyadh

photo: Thorsten Naeser

Ultrashort-pulse lasers can produce attosecond flashes of extreme ultraviolet light, which can implement this exposure time. These flashes can ‘freeze’ the motion of electrons on the attosecond time scale, in a similar way to how high-speed cameras are able to capture rapidly moving macroscopic objects with a fast shutter speed.

Since 2001, scientists have been able to generate and measure attosecond light flashes through novel, ultrafast laser techniques and use them to gain insight into hitherto immeasurably fast phenomena of the microcosm.

Several years ago, researchers from the Laboratory for Attosecond Physics at the MPQ) and the LMU teamed up with laser physicists from the Department of Physics & Astronomy Department at KSU in order to proliferate this powerful technology to one of the largest universities in the Arab world.

As a result of their efforts and after years of preparation, the Attosecond Science Laboratory (ASL) was created at the KSU. The new laboratory allows the collaboration to perform world-class experiments in Riyadh and provide students from the region access to cutting-edge research in laser science.

Ferenc Krausz, Director at the MPQ and chair holder at the LMU believes that “by creating the ASL, our collaboration can not only spawn new scientific findings – as is normal for every well-performing cooperation – but settles a new field of research like attosecond physics in a region where students have to travel thousands of miles to be able to access this technology.”

In addition to the more than 30 research facilities in Europe, North America, and the Far East involved in research into electrons, we now have the first laboratory of this kind in the Gulf States. It offers scientists and students from the Gulf region unique research opportunities at a world-class laser facility.

Motions of electrons are the essential processes of life. For the very first time, with the tools and techniques of attosecond technology we are gaining insight into how they work.

In medicine, this new knowledge can help to develop innovative technology for the diagnosis and therapy of incurable diseases. In information technology, attosecond science can provide us with the possibility to quicken signal processing to its ultimate limit, which is believed to be the extreme frequency of light oscillations.

The Inauguration Ceremony will take place February 16th, 2015 at the King Saud University in Riyadh. In the presence of the rector of the KSU, Dr. Badran A. Al-omar, world-renowned pioneers of laser science, such as Prof. Gérard Mourou, Prof. Paul Corkum, and Nobel laureate Prof. Theodor Hänsch will deliver lectures about their groundbreaking work.

For more information:

Prof. Ferenc Krausz
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32905-612
Fax: +49 89 32905-649
E-Mail: ferenc.krausz@mpq.mpg.de
http://www.attoworld.de

Prof. Abdallah M. Azzeer
Physics & Astronomy Dept.
King Saud University
Office: +966 1 467 6617
Email: azzeer@ksu.edu.sa
http://www.attoworld.sa

Thorsten Naeser
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32905-124
Fax: +49 89 32905-649
E-Mail: thorsten.naeser@mpq.mpg.de
http://www.attoworld.de

Karolina Schneider | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>