Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attosecond Science Laboratory: Ultrafast Photography in Saudi Arabia

13.02.2015

Electrons cannot hide anymore – even in Saudi Arabia. On February 16th, 2015, the new ‘Attosecond Science Laboratory’ will be inaugurated at the King Saud University in Riyadh. It is the first attosecond laboratory in the whole Arabic world and a product of the collaboration between the Ludwig Maximilians University (LMU) Munich, the Max Planck Institute for Quantum Optics (MPQ) in Garching, and the King Saud University (KSU) in Riyadh. Researchers from the three institutions will use the new facility to investigate electrons in motion.

Electrons, once excited, move in atomic systems within attoseconds. One attosecond is merely a billionth of a billionth of a second (10^-18 seconds). To take freeze-frame snapshots of such fast movements, the exposure time must be correspondingly brief.


The new "Attosecond Science Laboratory" in Riyadh

photo: Thorsten Naeser

Ultrashort-pulse lasers can produce attosecond flashes of extreme ultraviolet light, which can implement this exposure time. These flashes can ‘freeze’ the motion of electrons on the attosecond time scale, in a similar way to how high-speed cameras are able to capture rapidly moving macroscopic objects with a fast shutter speed.

Since 2001, scientists have been able to generate and measure attosecond light flashes through novel, ultrafast laser techniques and use them to gain insight into hitherto immeasurably fast phenomena of the microcosm.

Several years ago, researchers from the Laboratory for Attosecond Physics at the MPQ) and the LMU teamed up with laser physicists from the Department of Physics & Astronomy Department at KSU in order to proliferate this powerful technology to one of the largest universities in the Arab world.

As a result of their efforts and after years of preparation, the Attosecond Science Laboratory (ASL) was created at the KSU. The new laboratory allows the collaboration to perform world-class experiments in Riyadh and provide students from the region access to cutting-edge research in laser science.

Ferenc Krausz, Director at the MPQ and chair holder at the LMU believes that “by creating the ASL, our collaboration can not only spawn new scientific findings – as is normal for every well-performing cooperation – but settles a new field of research like attosecond physics in a region where students have to travel thousands of miles to be able to access this technology.”

In addition to the more than 30 research facilities in Europe, North America, and the Far East involved in research into electrons, we now have the first laboratory of this kind in the Gulf States. It offers scientists and students from the Gulf region unique research opportunities at a world-class laser facility.

Motions of electrons are the essential processes of life. For the very first time, with the tools and techniques of attosecond technology we are gaining insight into how they work.

In medicine, this new knowledge can help to develop innovative technology for the diagnosis and therapy of incurable diseases. In information technology, attosecond science can provide us with the possibility to quicken signal processing to its ultimate limit, which is believed to be the extreme frequency of light oscillations.

The Inauguration Ceremony will take place February 16th, 2015 at the King Saud University in Riyadh. In the presence of the rector of the KSU, Dr. Badran A. Al-omar, world-renowned pioneers of laser science, such as Prof. Gérard Mourou, Prof. Paul Corkum, and Nobel laureate Prof. Theodor Hänsch will deliver lectures about their groundbreaking work.

For more information:

Prof. Ferenc Krausz
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32905-612
Fax: +49 89 32905-649
E-Mail: ferenc.krausz@mpq.mpg.de
http://www.attoworld.de

Prof. Abdallah M. Azzeer
Physics & Astronomy Dept.
King Saud University
Office: +966 1 467 6617
Email: azzeer@ksu.edu.sa
http://www.attoworld.sa

Thorsten Naeser
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32905-124
Fax: +49 89 32905-649
E-Mail: thorsten.naeser@mpq.mpg.de
http://www.attoworld.de

Karolina Schneider | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>