Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Atoms can be in two places at the same time


Can a penalty kick simultaneously score a goal and miss? For very small objects, at least, this is possible: according to the predictions of quantum mechanics, microscopic objects can take different paths at the same time. The world of macroscopic objects follows other rules: the football always moves in a definite direction. But is this always correct?

Physicists of the University of Bonn have constructed an experiment designed to possibly falsify this thesis. Their first experiment shows that Caesium atoms can indeed take two paths at the same time.

The Bonn team has developed a measurement scheme that indirectly measures the position of an atom. In essence, one looks where the Caesium atom is not. The image clarifies this procedure. Let us assume that two containers are in front of us and a cat is hidden under one of them (a). However, we do not know under which one. We tentatively lift the right jar (b) and we find it empty. We, thus, conclude that the cat must be in the left jar and yet we have not disturbed it. Had we have lifted the left jar instead, we would have disturbed the cat (c), and the measurement must be discarded.

In the macro-realist’s world, this measurement scheme would have absolutely no influence on the cat’s state, which remains undisturbed all the time. In the quantum world, however, a negative measurement that reveals the cat’s position, like in (b), is already sufficient to destroy the quantum superposition and to influence the result of the experiment. The Bonn physicists have exactly observed this effect.

© Andrea Alberti /

Almost 100 years ago physicists Werner Heisenberg, Max Born und Erwin Schrödinger created a new field of physics: quantum mechanics. Objects of the quantum world – according to quantum theory – no longer move along a single well-defined path. Rather, they can simultaneously take different paths and end up at different places at once. Physicists speak of quantum superposition of different paths.

At the level of atoms, it looks as if objects indeed obey quantum mechanical laws. Over the years, many experiments have confirmed quantum mechanical predictions. In our macroscopic daily experience, however, we witness a football flying along exactly one path; it never strikes the goal and misses at the same time. Why is that so?

“There are two different interpretations,” says Dr. Andrea Alberti of the Institute of Applied Physics of the University of Bonn. “Quantum mechanics allows superposition states of large, macroscopic objects. But these states are very fragile, even following the football with our eyes is enough to destroy the superposition and makes it follow a definite trajectory.”

Do “large” objects play by different rules?

But it could also be that footballs obey completely different rules than those applying for single atoms. “Let us talk about the macro-realistic view of the world,” Alberti explains. “According to this interpretation, the ball always moves on a specific trajectory, independent of our observation, and in contrast to the atom.”

But which of the two interpretations is correct? Do “large” objects move differently from small ones? In collaboration with Dr. Clive Emary of the University of Hull in the U.K., the Bonn team has come up with an experimental scheme that may help to answer this question. “The challenge was to develop a measurement scheme of the atoms’ positions which allows one to falsify macro-realistic theories,” adds Alberti.

The physicists describe their research in the journal “Physical Review X:” With two optical tweezers they grabbed a single Caesium atom and pulled it in two opposing directions. In the macro-realist’s world the atom would then be at only one of the two final locations. Quantum-mechanically, the atom would instead occupy a superposition of the two positions.

“We have now used indirect measurements to determine the final position of the atom in the most gentle way possible,” says the PhD student Carsten Robens. Even such an indirect measurement (see figure) significantly modified the result of the experiments. This observation excludes – falsifies, as Karl Popper would say more precisely – the possibility that Caesium atoms follow a macro-realistic theory. Instead, the experimental findings of the Bonn team fit well with an interpretation based on superposition states that get destroyed when the indirect measurement occurs. All that we can do is to accept that the atom has indeed taken different paths at the same time.

“This is not yet a proof that quantum mechanics hold for large objects,” cautions Alberti. “The next step is to separate the Caesium atom’s two positions by several millimetres. Should we still find the superposition in our experiment, the macro-realistic theory would suffer another setback.”

Publication: Carsten Robens, Wolfgang Alt, Dieter Meschede, Clive Emary und Andrea Alberti: Ideal negative measurements in quantum walks disprove theories based on classical trajectories; Physical Review X, 20.1.2015 (DOI: 10.1103/PhysRevX.5.011003)

Andrea Alberti
Institut für Angewandte Physik (IAP), Universität Bonn
Tel: 0228/73-3483 oder -3471

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>