Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists Solve Mystery in Milky Way Galaxy

13.07.2009
A team of astrophysicists has solved a mystery that led some scientists to speculate that the distribution of certain gamma rays in our Milky Way galaxy was evidence of a form of undetectable “dark matter” believed to make up much of the mass of the universe.

In two separate scientific papers, the most recent of which appears in the July 10 issue of the journal Physical Review Letters, the astrophysicists show that this distribution of gamma rays can be explained by the way “antimatter positrons” from the radioactive decay of elements, created by massive star explosions in the galaxy, propagate through the galaxy. Thus, the scientists said, the observed distribution of gamma rays is not evidence for dark matter.

“There is no great mystery,” said Richard Lingenfelter, a research scientist at UC San Diego’s Center for Astrophysics and Space Sciences who conducted the studies with Richard Rothschild, a research scientist also at UCSD, and James Higdon, a physics professor at the Claremont Colleges. “The observed distribution of gamma rays is in fact quite consistent with the standard picture.”

Over the past five years, gamma ray measurements from the European satellite INTEGRAL have perplexed astronomers, leading some to argue that a “great mystery” existed because the distribution of these gamma rays across different parts of the Milky Way galaxy was not as expected.

To explain the source of this mystery, some astronomers had hypothesized the existence of various forms of dark matter, which astronomers suspect exists—from the unusual gravitational effects on visible matter such as stars and galaxies—but have not yet found.

Credit ESA What is known for certain is that our galaxy—and others—are filled with tiny subatomic particles known as positrons, the antimatter counterpart of typical, everyday electrons. When an electron and positron encounter each other in space, the two particles annihilate and their energy is released as gamma rays. That is, the electron and positron disappear and two or three gamma rays appear.

”These positrons are born at nearly the speed of light, and travel thousands of light years before they slow down enough in dense clouds of gas to have a chance of joining with an electron to annihilate in a dance of death,” explains Higdon. “Their slowing down occurs from the drag of other particles during their journey through space. Their journey is also impeded by the many fluctuations in the galactic magnetic field that scatter them back and forth as they move along. All of this must be taken into account in calculating the average distance the positrons would travel from their birthplaces in supernova explosions.”

”Some positrons head towards the center of the Galaxy, some towards the outer reaches of the Milky Way known as the galactic halo, and some are caught in the spiral arms,” said Rothschild. “While calculating this in detail is still far beyond the fastest supercomputers, we were able to use what we know about how electrons travel throughout the solar system and what can be inferred about their travel elsewhere to estimate how their anti-matter counterparts permeate the galaxy.”

The scientists calculated that most of the gamma rays should be concentrated in the inner regions of the galaxy, just as was observed by the satellite data, the team reported in a paper published last month in the Astrophysical Journal.

Credit ESA “The observed distribution of gamma rays is consistent with the standard picture where the source of positrons is the radioactive decay of isotopes of nickel, titanium and aluminum produced in supernova explosions of stars more massive than the Sun,” said Rothschild.

In their companion paper in this week’s issue of Physical Review Letters, the scientists point out that a basic assumption of one of the more exotic explanations for the purported mystery—dark matter decays or annihilations—is flawed, because it assumes that the positrons annihilate very close to the exploding stars from which they originated.

“We clearly demonstrated this was not the case, and that the distribution of the gamma rays observed by the gamma ray satellite was not a detection or indication of a ‘dark matter signal’,” said Lingenfelter.

The scientists were supported in their studies by grants from the National Aeronautics and Space Administration.

Media Contact: Kim McDonald, 858-534-7572 or kmcdonald@ucsd.edu

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>