Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists recreate stars in the lab

12.12.2008
Greater understanding of energetic processes in stars could accelerate development of clean energy from nuclear fusion: ESF project brings together astronomical theory, observation and experiment

Astronomers are recruiting the physics laboratory to unravel the high energy processes involved in formation of stars and other critical processes within the universe. Experiments with high energy radiation and plasmas in the laboratory involving temperatures and magnetic fields over a million times greater than normally encountered on earth are also producing spin off benefits for important applications, notably in the drive towards nuclear fusion as a source of clean carbon-neutral energy.

Although a great deal has been learnt through a combination of theoretical models and observation of the universe right across the electromagnetic spectrum including visible light with conventional optical telescopes, many questions on energetic processes taking place billions of miles away still remain unanswered.This is why astrophysicists are turning to a third ingredient, the high energy laboratory, fusing results obtained there with theoretical models and direct observation through instruments. The state of this highly promising field was discussed at a recent workshop organised by the European Science Foundation (ESF), which also set out a roadmap for future collaborative research in Europe over the next five years.

The workshop is setting up a European framework for conducting coordinated experiments in Extreme Laboratory Astrophysics (ELA), aiming to simulate the high temperatures and magnetic fields experienced in a variety of formative processes occurring throughout the universe's history. Full blown ELA builds on earlier more tentative initiatives, such as the JETSET network, which is a four-year Marie Curie Research Training Network (RTN) funded by the European Commission, designed to build a vibrant interdisciplinary European Research and Training community centred on rigorous and novel approaches to plasma jet studies, with a focus on flows produced during star formation. Plasma jets comprise high energy atomic nuclei stripped of their electrons, expelled from stars during their formation and early in their lives.

ELA experiments however, as discussed at the ESF workshop, go much further than the study of plasma jets, and therefore expand on the foundations created by JETSET. "The JETSET network was truly innovative in that it combined not only theoretical and observational astrophysics, but also for the first time experiments," said Andrea Ciardi, convenor of the ESF workshop and plasma physicist at the Ecole Normale Superieure in Paris. "However JETSET was limited in terms of astrophysical phenomena studied (jets from young stars) and in terms of groups involved. The workshop aims at the creation of an XLA framework combining numerical modelling, experiments and theory, to complement observations in the study of a broader range of astrophysical phenomena."

The workshop fulfilled its objectives of stimulating the required interdisciplinary research effort, and providing a broad outlook of future objectives. Furthermore it generated great excitement about prospects for the field, according to Ciardi. "The workshop covered a large spectrum of research both in astrophysics and in laboratory plasma physics: from cosmic rays acceleration, to the properties of fast winds in stars, and from high-power lasers aimed at achieving fusion to experiments producing magnetic bubbles expanding at hundreds of kilometres per second," said Ciardi. "Indeed the excitement comes from being able to re-create in the laboratory astrophysical phenomena taking place in some of the most extreme and exotic objects in the universe."

The ELA experiments should also have practical benefits. "ELA research has an inherent duality: experiments developed initially for laboratory astrophysics, including new diagnostics, theoretical and numerical models, can be useful for example to fusion research, which is pursuing a clean source of energy, which in some cases uses similar theoretical and experimental techniques," said Ciardi.

ELA research could also help improve weather forecasts by leading to better understanding of cosmic rays that strike the earth's atmosphere and have a significant effect on cloud formation and thunderstorm activity.

The ESF workshop, Extreme Laboratory Astrophysics: Advances and Opportunities in High-Energy Density Experiments, was held in Paris (France), in September 2008.

Thomas Lau | alfa
Further information:
http://www.esf.org/

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>