Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists recreate stars in the lab

12.12.2008
Greater understanding of energetic processes in stars could accelerate development of clean energy from nuclear fusion: ESF project brings together astronomical theory, observation and experiment

Astronomers are recruiting the physics laboratory to unravel the high energy processes involved in formation of stars and other critical processes within the universe. Experiments with high energy radiation and plasmas in the laboratory involving temperatures and magnetic fields over a million times greater than normally encountered on earth are also producing spin off benefits for important applications, notably in the drive towards nuclear fusion as a source of clean carbon-neutral energy.

Although a great deal has been learnt through a combination of theoretical models and observation of the universe right across the electromagnetic spectrum including visible light with conventional optical telescopes, many questions on energetic processes taking place billions of miles away still remain unanswered.This is why astrophysicists are turning to a third ingredient, the high energy laboratory, fusing results obtained there with theoretical models and direct observation through instruments. The state of this highly promising field was discussed at a recent workshop organised by the European Science Foundation (ESF), which also set out a roadmap for future collaborative research in Europe over the next five years.

The workshop is setting up a European framework for conducting coordinated experiments in Extreme Laboratory Astrophysics (ELA), aiming to simulate the high temperatures and magnetic fields experienced in a variety of formative processes occurring throughout the universe's history. Full blown ELA builds on earlier more tentative initiatives, such as the JETSET network, which is a four-year Marie Curie Research Training Network (RTN) funded by the European Commission, designed to build a vibrant interdisciplinary European Research and Training community centred on rigorous and novel approaches to plasma jet studies, with a focus on flows produced during star formation. Plasma jets comprise high energy atomic nuclei stripped of their electrons, expelled from stars during their formation and early in their lives.

ELA experiments however, as discussed at the ESF workshop, go much further than the study of plasma jets, and therefore expand on the foundations created by JETSET. "The JETSET network was truly innovative in that it combined not only theoretical and observational astrophysics, but also for the first time experiments," said Andrea Ciardi, convenor of the ESF workshop and plasma physicist at the Ecole Normale Superieure in Paris. "However JETSET was limited in terms of astrophysical phenomena studied (jets from young stars) and in terms of groups involved. The workshop aims at the creation of an XLA framework combining numerical modelling, experiments and theory, to complement observations in the study of a broader range of astrophysical phenomena."

The workshop fulfilled its objectives of stimulating the required interdisciplinary research effort, and providing a broad outlook of future objectives. Furthermore it generated great excitement about prospects for the field, according to Ciardi. "The workshop covered a large spectrum of research both in astrophysics and in laboratory plasma physics: from cosmic rays acceleration, to the properties of fast winds in stars, and from high-power lasers aimed at achieving fusion to experiments producing magnetic bubbles expanding at hundreds of kilometres per second," said Ciardi. "Indeed the excitement comes from being able to re-create in the laboratory astrophysical phenomena taking place in some of the most extreme and exotic objects in the universe."

The ELA experiments should also have practical benefits. "ELA research has an inherent duality: experiments developed initially for laboratory astrophysics, including new diagnostics, theoretical and numerical models, can be useful for example to fusion research, which is pursuing a clean source of energy, which in some cases uses similar theoretical and experimental techniques," said Ciardi.

ELA research could also help improve weather forecasts by leading to better understanding of cosmic rays that strike the earth's atmosphere and have a significant effect on cloud formation and thunderstorm activity.

The ESF workshop, Extreme Laboratory Astrophysics: Advances and Opportunities in High-Energy Density Experiments, was held in Paris (France), in September 2008.

Thomas Lau | alfa
Further information:
http://www.esf.org/

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>