Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers reveal supermassive black hole's intense magnetic field

17.04.2015

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy. The results appear in the 17 April 2015 issue of the journal Science.


This artist's impression shows the surroundings of a supermassive black hole, typical of that found at the heart of many galaxies. The black hole itself is surrounded by a brilliant accretion disc of very hot, infalling material and, further out, a dusty torus. There are also often high-speed jets of material ejected at the black hole's poles that can extend huge distances into space.

Credit: ESO/L. Calçada

A team of five astronomers from Chalmers University of Technology have revealed an extremely powerful magnetic field, beyond anything previously detected in the core of a galaxy, very close to the event horizon of a supermassive black hole. This new observation helps astronomers to understand the structure and formation of these massive inhabitants of the centres of galaxies, and the twin high-speed jets of plasma they frequently eject from their poles.

Up to now only weak magnetic fields far from black holes -- several light-years away -- had been probed. In this study, however, astronomers from Chalmers University of Technology and Onsala Space Observatory in Sweden have now used Alma to detect signals directly related to a strong magnetic field very close to the event horizon of the supermassive black hole in a distant galaxy named PKS 1830-211. This magnetic field is located precisely at the place where matter is suddenly boosted away from the black hole in the form of a jet.

The team measured the strength of the magnetic field by studying the way in which light was polarised, as it moved away from the black hole.

"Polarisation is an important property of light and is much used in daily life, for example in sun glasses or 3D glasses at the cinema," says Ivan Marti-Vidal, lead author of this work.

"When produced naturally, polarisation can be used to measure magnetic fields, since light changes its polarisation when it travels through a magnetised medium. In this case, the light that we detected with Alma had been travelling through material very close to the black hole, a place full of highly magnetised plasma."

The astronomers applied a new analysis technique that they had developed to the Alma data and found that the direction of polarisation of the radiation coming from the centre of PKS 1830-211 had rotated.

Magnetic fields introduce Faraday rotation, which makes the polarisation rotate in different ways at different wavelengths. The way in which this rotation depends on the wavelength tells us about the magnetic field in the region.

The Alma observations were at an effective wavelength of about 0.3 millimetres, the shortest wavelengths ever used in this kind of study. This allows the regions very close to the central black hole to be probed. Earlier investigations were at much longer radio wavelengths. Only light of millimetre wavelengths can escape from the region very close to the black hole; longer wavelength radiation is absorbed.

"We have found clear signals of polarisation rotation that are hundreds of times higher than the highest ever found in the Universe," says Sebastien Muller, co-author of the paper. "Our discovery is a giant leap in terms of observing frequency, thanks to the use of Alma, and in terms of distance to the black hole where the magnetic field has been probed -- of the order of only a few light-days from the event horizon. These results, and future studies, will help us understand what is really going on in the immediate vicinity of supermassive black holes."

###

More about the research

This research was presented in a paper entitled "A strong magnetic field in the jet base of a supermassive black hole" to appear in Science on 17 April 2015, vol 348, issue 6232.

The team is composed of Ivan Martí-Vidal (Onsala Space Observatory and Department of Earth and Space Sciences, Chalmers University of Technology, Sweden), Sebastien Muller (Onsala Space Observatory and Department of Earth and Space Sciences, Chalmers University of Technology, Sweden), Wouter Vlemmings (Department of Earth and Space Sciences and Onsala Space Observatory, Chalmers University of Technology, Sweden), Cathy Horellou (Department of Earth and Space Sciences, Chalmers University of Technology, Sweden) and Susanne Aalto (Department of Earth and Space Sciences, Chalmers University of Technology, Sweden).

More about Alma

Alma (Atacama Large Millimeter/submillimeter Array) -- with its 66 gigantic 12-metre and 7-metre antennas - is an international astronomy facility located at 5000 metres altitude at Chajnantor in northern Chile. Alma is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile and is the world's largest astronomy project. Chalmers and Onsala Space Observatory have been part of Alma since its inception; receivers for the telescope are one of many contributions. Onsala Space Observatory is host to the Nordic Alma Regional Centre, which provides technical expertise to the Alma project and supports astronomers in the Nordic countries in using Alma.

More about Onsala Space Observatory

Onsala Space Observatory is Sweden's national facility for radio astronomy. The observatory provides researchers with equipment for the study of the earth and the rest of the universe. In Onsala, 45 km south of Gothenburg, it operates two radio telescopes and a station in the international telescope Lofar. It also participates in several international projects. The observatory is hosted by Department of Earth and Space Sciences at Chalmers University of Technology, and is operated on behalf of the Swedish Research Council.

Contacts:

Robert Cumming, astronomer and communications officer, Onsala Space Observatory, Chalmers, +46 31-772 5500, +46 70-493 31 14, robert.cumming@chalmers.se

Ivan Martí-Vidal, astronomer, Onsala Space Observatory, Chalmers, +46 31 772 5557, ivan.marti-vidal@chalmers.se

Media Contact

Robert Cumming
robert.cumming@chalmers.se
46-704-933-114

 @chalmersnyheter

http://www.chalmers.se/en/ 

 

Robert Cumming | EurekAlert!

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>