Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers reveal secret of the rapid evolution of the central star in the Stingray Nebula

14.09.2016

Tübingen researchers analyze reborn star in a not yet observed evolutionary phase

An international team of astronomers using the Hubble space telescope have been able to study stellar evolution in action. They observed dramatic increases in the temperature of the star SAO 244567 over several decades. Now the star is cooling again, having been reborn into an earlier phase of stellar evolution. This makes it the first reborn star to have been observed during both the heating and cooling stages of rebirth.


This image of the Stingray nebula, a planetary nebula 2700 light-years from Earth, was taken with the Wide Field and Planetary Camera 2 (WFPC2) of the Hubble Space Telescope in 1998. In the center of the nebula the fast evolving star SAO 244567 is located. Observations made within the last 45 years showed that the surface temperature of the star increased by almost 40 000 degree Celsius. Now new observations of the spectra of the star have revealed that SAO 244567 has started to cool again.

“SAO 244567 is one of the rare examples of a star that allows us to witness stellar evolution in real time,” explains Nicole Reindl from the University of Leicester, UK, lead author of the study. Reindl worked with a team of astronomers including Professor Klaus Werner and Dr. Thomas Rauch of University of Tübingen’s Institute of Astronomy and Astrophysics, where Reindl was formerly also based. Their results will be published in the upcoming Monthly Notices of the Royal Astronomical Society.

Even though the Universe is constantly changing, most processes are too slow to be observed within a human lifespan. Between 1971 and 1990 the surface temperature of the star rose dramatically. “Over only twenty years the star doubled its temperature and it was possible to watch it ionizing its previously ejected envelope, which is now known as the Stingray Nebula,” Reindl says.

Astronomers have been observing SAO 244567 for the past 45 years. While completing her doctoral thesis in Tübingen – her dissertation was awarded with the Doctoral Thesis Prize 2016 of the German Astronomical Society – Reindl analyzed all observations of the star and found that in 2002 it must have reached a maximum temperature of 60,000 Kelvin – 40,000 Kelvin more than thirty years earlier.

This is unusual, though not unheard-of, and the rapid heating could easily be explained if one assumed that SAO 244567 had an initial mass of 3 to 4 times the mass of the Sun. However, the data show that SAO 244567 must have had an original mass similar to that of our Sun. Such low-mass stars usually evolve on much longer timescales, so the rapid heating has been a mystery for decades.

Back in 2014 Reindl and her team proposed a theory that resolved the issue of both SAO 244567’s rapid increase in temperature as well as the low mass of the star. They suggested that the heating was due to what is known as a helium-shell flash event: a brief ignition of helium outside the stellar core.

This theory has very clear implications for SAO 244567’s future: if it has indeed experienced such a flash, then this would force the central star to begin to expand and cool again — it would return back to the previous phase of its evolution. This is exactly what the new observations confirmed. As Reindl explains: “The release of nuclear energy by the flash forces the already very compact star to expand back to giant dimensions — the born-again scenario.”

Yet no current stellar evolutionary models can fully explain SAO 244567’s behavior. As Reindl elaborates: “We need refined calculations to explain some still mysterious details in the behavior of SAO 244567. These could not only help us to better understand the star itself but could also provide a deeper insight in the evolution of central stars of planetary nebulae.” Until astronomers develop more refined models for the life cycles of stars, aspects of SAO 244567’s evolution will remain a mystery.

Publication:
Nicole Reindl, T. Rauch, M. M. Miller Bertolami, H. Todt, K. Werner: Breaking news from the HST: The central star of the Stingray Nebula is now returning towards the AGB. Monthly Notices of the Royal Astronomical Society (in press).

Contact:
Dr. Nicole Reindl
Formerly of the University of Tübingen
University of Leicester
Department of Physics and Anstronomy
Phone +44 (0)116 223 1385
E-mail nr152[at]le.ac.uk

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-tuebingen.de/

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>