Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers probe inner region of young star and its planets

20.04.2015

Taking advantage of the unprecedented sensitivity of the Large Binocular Telescope in southeastern Arizona, an international team of astronomers has obtained the first results from the LEECH exoplanets survey

Astronomers have probed deeper than before into a planetary system 130 light-years from Earth. The observations mark the first results of a new exoplanet survey called LEECH (LBT Exozodi Exoplanet Common Hunt), and are published today in the journal Astronomy and Astrophysics.


The planetary system of HR 8799. Most of the light of the star has been erased by the processing of the images and the four planets, identified from b to e in the order of their discovery, are easily detected.

Credit: A.-L. Maire / LBTO

The planetary system of HR8799, a young star only 30 million years old, was the first to be directly imaged, with three planets found in in 2008 and a fourth one in 2010.

"This star was therefore a target of choice for the LEECH survey, offering the opportunity to acquire new images and better define the dynamical properties of the exoplanets orbiting," said Christian Veillet, director of the Large Binocular Telescope Observatory (LBTO).

The LEECH survey began at the Large Binocular Telescope (LBT) in southeastern Arizona in February 2013 to search for and characterize young and adolescent exoplanets in the near-infrared spectrum (specifically, at a wavelength of 3.8 micrometers that astronomers call the L' band). LEECH exploits the superb performance of the LBT adaptive optics system to image exoplanets with the L/M-band infrared camera (LMIRCam) installed in the LBT Interferometer (LBTI).

"The LBT enables us to look at those planets at a wavelength that nobody else is really using," Veillet explained. "Because they are gas giants and still very young, they glow nicely at the L' band, and because they appear so bright there, they stand out, allowing us to observe closer to the star. This has allowed us to nail down the orbits of this system, which is pretty far away."

"Normally the problem with this approach would be that at 4 microns, telescope optics glow themselves," said Andy Skemer, a Hubble Fellow at the University of Arizona's Department of Astronomy and Steward Observatory and the lead of the survey. "However, with LBT, everything about the telescope, its adaptive optics system and science camera have been optimized to minimize this glow. As a result, LEECH is more sensitive than previous exoplanet imaging surveys, and this new image of HR 8799 is proof."

The study was dedicated to studying the planet architecture of the HR 8799 system, according to the leading author, Anne-Lise Maire, a postdoctoral fellow at INAF-Padova Observatory in Padova, Italy. The team sought to constrain the orbital parameters of the four known giant planets and the physical properties of a putative fifth planet inside the known planets.

"To address the first point, we investigated in particular the types of resonances between the planet orbits," Maire explained. "From the resonances, we learn not only about the overall architecture of the planetary system, but also about the mass range of the planets."

"They cannot be too massive, or else the system would be dynamically unstable, as previous studies have suggested. Moreover, the presence of resonances between the planets indicates that they gravitationally interact with each other, which gives us a lower limit on their masses."

The results of this study favor an architecture for the system based on multiple double resonances, in other words, each of the three outer planets takes about twice as long to complete an orbit around the star as its neighbor closer to the star.

"LEECH's unique sensitivity enabled us to probe the inner region of this planetary system," added Wolfgang Brandner, a scientist at the Max Planck Institute for Astronomy in Heidelberg, Germany. "A fifth massive giant planet in an inner resonant orbit was excluded. This could mean that the HR 8799 planetary system has an architecture similar to the solar system, with four massive planets at larger distances, and potentially lower mass planets - which haven't been detected, yet - in the inner planetary system."

"Our observations give us good idea that this system is pretty stable," Veillet added, "in other words, there is no indication those planets are going to collide with each other in a few million years."

In its current configuration, the inner planet LEECH can see approaches the star to about 15 Astronomical Units (AU), Veillet explained, or fifteen times the average distance between the earth and our sun.

"If there were planets of similar brightness closer to the star, we should see it as close as 10 AU," he said, "which corresponds to the orbit of Saturn."

According to Veillet, the LEECH survey is an exemplary project in two ways.

"It takes full advantage of the adaptive optics performance offered by our adaptive secondary mirrors, and it combines resources from most of the LBTO partners - four U.S. universities, two institutes in Germany, and the Italian community - to build a large program of more than 100 observing nights. This would not be possible for a single partner on a reasonable time scale."

###

The LBT is an international collaboration among institutions in the U.S., Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia. The Large Binocular Telescope Interferometer is funded by NASA as part of its Exoplanet Exploration program. LMIRCam is funded by the National Science Foundation through grant NSF AST-0705296.

Daniel Stolte | EurekAlert!

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>