Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers confirm faintest early-universe galaxy ever seen

24.05.2016

UCLA professors, graduate students contribute to discovery, which could help explain how 'cosmic dark ages' ended

An international team of scientists, including two professors and three graduate students from UCLA, has detected and confirmed the faintest early-universe galaxy ever. Using the W. M. Keck Observatory on the summit on Mauna Kea in Hawaii, the researchers detected the galaxy as it was 13 billion years ago. The results were published in the Astrophysical Journal Letters.


Composite image of the galaxy cluster from three different filters on the Hubble Space Telescope. The wave charts (insets at left) show spectra of the multiply imaged systems. The fact that they share peaks at the same wavelength shows that they belong to the same source. At bottom right, the Keck I and Keck II Telescopes at Hawaii's the W. M. Keck Observatory.

Credit: BRADAC/HST/W. M. Keck Observatory

Tommaso Treu, a professor of physics and astronomy in the UCLA College and a co-author of the research, said the discovery could be a step toward unraveling one of the biggest mysteries in astronomy: how a period known as the "cosmic dark ages" ended.

The researchers made the discovery using an effect called gravitational lensing to see the incredibly faint object, which was born just after the Big Bang. Gravitational lensing was first predicted by Albert Einstein almost a century ago; the effect is similar to that of an image behind a glass lens appearing distorted because of how the lens bends light.

The detected galaxy was behind a galaxy cluster known as MACS2129.4-0741, which is massive enough to create three different images of the galaxy.

According to the Big Bang theory, the universe cooled as it expanded. As that happened, Treu said, protons captured electrons to form hydrogen atoms, which in turn made the universe opaque to radiation -- giving rise to the cosmic dark ages.

"At some point, a few hundred million years later, the first stars formed and they started to produce ultraviolet light capable of ionizing hydrogen," Treu said. "Eventually, when there were enough stars, they might have been able to ionize all of the intergalactic hydrogen and create the universe as we see it now."

That process, called cosmic reionization, happened about 13 billion years ago, but scientists have so far been unable to determine whether there were enough stars to do it or whether more exotic sources, like gas falling onto supermassive black holes, might have been responsible.

"Currently, the most likely suspect is stars within faint galaxies that are too faint to see with our telescopes without gravitational lensing magnification," Treu said. "This study exploits gravitational lensing to demonstrate that such galaxies exist, and is thus an important step toward solving this mystery."

The research team was led by Marusa Bradac, a professor at UC Davis. Co-authors include Matthew Malkan, a UCLA professor of physics and astronomy, and UCLA graduate students Charlotte Mason, Takahiro Morishita and Xin Wang.

The galaxy's magnified spectra were detected independently by both Keck Observatory and Hubble Space Telescope data.

Stuart Wolpert | EurekAlert!

More articles from Physics and Astronomy:

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

nachricht Astronomers probe swirling particles in halo of starburst galaxy
28.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>