Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers confirm faintest early-universe galaxy ever seen

24.05.2016

UCLA professors, graduate students contribute to discovery, which could help explain how 'cosmic dark ages' ended

An international team of scientists, including two professors and three graduate students from UCLA, has detected and confirmed the faintest early-universe galaxy ever. Using the W. M. Keck Observatory on the summit on Mauna Kea in Hawaii, the researchers detected the galaxy as it was 13 billion years ago. The results were published in the Astrophysical Journal Letters.


Composite image of the galaxy cluster from three different filters on the Hubble Space Telescope. The wave charts (insets at left) show spectra of the multiply imaged systems. The fact that they share peaks at the same wavelength shows that they belong to the same source. At bottom right, the Keck I and Keck II Telescopes at Hawaii's the W. M. Keck Observatory.

Credit: BRADAC/HST/W. M. Keck Observatory

Tommaso Treu, a professor of physics and astronomy in the UCLA College and a co-author of the research, said the discovery could be a step toward unraveling one of the biggest mysteries in astronomy: how a period known as the "cosmic dark ages" ended.

The researchers made the discovery using an effect called gravitational lensing to see the incredibly faint object, which was born just after the Big Bang. Gravitational lensing was first predicted by Albert Einstein almost a century ago; the effect is similar to that of an image behind a glass lens appearing distorted because of how the lens bends light.

The detected galaxy was behind a galaxy cluster known as MACS2129.4-0741, which is massive enough to create three different images of the galaxy.

According to the Big Bang theory, the universe cooled as it expanded. As that happened, Treu said, protons captured electrons to form hydrogen atoms, which in turn made the universe opaque to radiation -- giving rise to the cosmic dark ages.

"At some point, a few hundred million years later, the first stars formed and they started to produce ultraviolet light capable of ionizing hydrogen," Treu said. "Eventually, when there were enough stars, they might have been able to ionize all of the intergalactic hydrogen and create the universe as we see it now."

That process, called cosmic reionization, happened about 13 billion years ago, but scientists have so far been unable to determine whether there were enough stars to do it or whether more exotic sources, like gas falling onto supermassive black holes, might have been responsible.

"Currently, the most likely suspect is stars within faint galaxies that are too faint to see with our telescopes without gravitational lensing magnification," Treu said. "This study exploits gravitational lensing to demonstrate that such galaxies exist, and is thus an important step toward solving this mystery."

The research team was led by Marusa Bradac, a professor at UC Davis. Co-authors include Matthew Malkan, a UCLA professor of physics and astronomy, and UCLA graduate students Charlotte Mason, Takahiro Morishita and Xin Wang.

The galaxy's magnified spectra were detected independently by both Keck Observatory and Hubble Space Telescope data.

Stuart Wolpert | EurekAlert!

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>