Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asteroid impacts on Earth make structurally bizarre diamonds, say ASU scientists

25.11.2014

Scientists have argued for half a century about the existence of a form of diamond called lonsdaleite, which is associated with impacts by meteorites and asteroids. A group of scientists based mostly at Arizona State University now show that what has been called lonsdaleite is in fact a structurally disordered form of ordinary diamond.

The scientists' report is published in Nature Communications, Nov. 20, by Péter Németh, a former ASU visiting researcher (now with the Research Centre of Natural Sciences of the Hungarian Academy of Sciences), together with ASU's Laurence Garvie, Toshihiro Aoki and Peter Buseck, plus Natalia Dubrovinskaia and Leonid Dubrovinsky from the University of Bayreuth in Germany. Buseck and Garvie are with ASU's School of Earth and Space Exploration, while Aoki is with ASU's LeRoy Eyring Center for Solid State Science.


Diamond grains from the Canyon Diablo meteorite. The tick marks are spaced one-fifth of a millimeter (200 microns) apart. Photo by: Arizona State University/Laurence Garvie

"So-called lonsdaleite is actually the long-familiar cubic form of diamond, but it's full of defects," says Péter Németh. These can occur, he explains, due to shock metamorphism, plastic deformation or unequilibrated crystal growth.

The lonsdaleite story began almost 50 years ago. Scientists reported that a large meteorite, called Canyon Diablo after the crater it formed on impact in northern Arizona, contained a new form of diamond with a hexagonal structure. They described it as an impact-related mineral and called it lonsdaleite, after Dame Kathleen Lonsdale, a famous crystallographer.

Since then, "lonsdaleite" has been widely used by scientists as an indicator of ancient asteroidal impacts on Earth, including those linked to mass extinctions. In addition, it has been thought to have mechanical properties superior to ordinary diamond, giving it high potential industrial significance. All this focused much interest on the mineral, although pure crystals of it, even tiny ones, have never been found or synthesized. That posed a long-standing puzzle.

The ASU scientists approached the question by re-examining Canyon Diablo diamonds and investigating laboratory samples prepared under conditions in which lonsdaleite has been reported.

Using the advanced electron microscopes in ASU's Center for Solid State Science, the team discovered, both in the Canyon Diablo and the synthetic samples, new types of diamond twins and nanometer-scale structural complexity. These give rise to features attributed to lonsdaleite.

"Most crystals have regular repeating structures, much like the bricks in a well-built wall," says Peter Buseck. However, interruptions can occur in the regularity, and these are called defects. "Defects are intermixed with the normal diamond structure, just as if the wall had an occasional half-brick or longer brick or row of bricks that's slightly displaced to one side or another."

The outcome of the new work is that so-called lonsdaleite is the same as the regular cubic form of diamond, but it has been subjected to shock or pressure that caused defects within the crystal structure.

One consequence of the new work is that many scientific studies based on the presumption that lonsdaleite is a separate type of diamond need to be re-examined. The study implies that both shock and static compression can produce an intensely defective diamond structure.

The new discovery also suggests that the observed structural complexity of the Canyon Diablo diamond results in interesting mechanical properties. It could be a candidate for a product with exceptional hardness.

The School of Earth and Space Exploration is an academic unit of ASU's College of Liberal Arts and Sciences.


Robert Burnham, robert.burnham@asu.edu

(480) 458-8207

Mars Space Flight Facility

Robert Burnham | EurekAlert!
Further information:
https://asunews.asu.edu/20141120-lonsdaleite

Further reports about: ASU Asteroid Canyon Space diamonds mechanical properties structural structure

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>