Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antimatter atoms ready for their close-up

07.02.2011
Controlling antihydrogen atoms using two different methods brings physicists closer to answering quantum and cosmic questions

Two international teams of physicists, including RIKEN researchers, have trapped and manipulated atoms made out of antimatter, in milestone experiments that should help to reveal why the substance is so rare in our Universe.

Since its existence was first predicted by physicist Paul Dirac in 1931, antimatter has become an increasingly common sight. The antiparticle of the electron, for example, is routinely used in positron emission tomography, a clinical imaging technique. Yet despite this routine use of isolated antimatter particles, making ‘anti-atoms’ is extremely difficult because matter and antimatter annihilate each other in a flash of energetic photons when they meet.

The simplest and most abundant atom in the universe—hydrogen—consists of a positive proton and an electron. Its opposite number, antihydrogen, contains a negative antiproton and a positron, and teaming the antiparticles without allowing them to touch any ordinary matter is a ticklish business.

In parallel research efforts, known as ALPHA and ASACUSA, the international teams of physicists have shown how to handle antihydrogen atoms in a way that will soon allow their properties to be investigated precisely, and compared with normal hydrogen.

Physicists are keen to make this comparison because one of the foundations of modern quantum physics—the charge, parity and time reversal symmetry theorem—states that hydrogen and antihydrogen should have identical energy levels, producing matching spectra when probed with light. But this also suggests that at the very beginning of the Universe, both matter and antimatter would have been created in equal quantities. So the fact that our Universe is almost entirely made of matter seems to contradict quantum theory, and poses a fundamental question about how the cosmos works.

Trapped in an asymmetric field

Researchers working on the ATHENA and ATRAP experiments at CERN, the European particle physics facility based in Geneva, Switzerland, first combined positrons and antiprotons to create cold antihydrogen in 2002. The ATHENA project evolved into ALPHA, which relies on electric and magnetic fields—a ‘magnetic bottle’, or Ioffe-Pritchard trap—to control, cool, and mix the particles, and to trap antihydrogen atoms.

“The challenge is the temperature of antihydrogen atoms,” says Yasunori Yamazaki of the RIKEN Advanced Science Institute in Wako, Japan, who is involved with both the ALPHA and ASACUSA experiments. Fast-moving antiprotons as hot as 100,000 kelvin must be chilled to less than 0.5 kelvin to form trappable antihydrogen.

In recent experiments, the ALPHA researchers collided about 30,000 antiprotons with electrons to cool them to roughly 200 kelvin in a cloud about 1.6 millimeters across. They cooled a separate pool of positrons by allowing the hotter particles to ‘evaporate’ away from the rest, leaving a 1.8 millimeter-diameter cloud of about two million particles at roughly 40 kelvin. The strong magnetic field containing the particles was shaped so that the particles collected in the center of the trap, and the researchers slowly coaxed the antiprotons towards the positrons by changing the electric field. After mixing for just a second, they removed any unreacted antiparticles from the trap.

About 0.2 seconds after the removal of antiprotons and positrons, the researchers opened the magnetic bottle to look for trapped antihydrogen atoms. Since antihydrogen atoms are neutral, any that formed were no longer controlled by the electric field. Those not cold enough to be trapped in the magnetic bottle drifted towards the sides of the trap, where they annihilated and formed exotic particles called pions, which were registered by silicon detectors. Studying the energy and the trajectory of the pions allowed the researchers to weed out any signals that had been produced by cosmic rays—high-energy particles from space. Overall, they found 38 atoms of antihydrogen from 335 experimental runs1.

Yamazaki hopes that antihydrogen could be trapped for much longer in future experiments, which would help efforts to study its properties. But “the strong magnetic field gradient of the magnetic bottle would make real high-resolution spectroscopy not straightforward,” he adds.

Synthesized in a symmetrical field

ASACUSA uses a different method of taming antihydrogen. It collects antiprotons and positrons in a cusp trap, which relies on symmetrical magnetic and electric fields, unlike ALPHA's asymmetrical fields. Recent experiments show that ASACUSA researchers can use the cusp trap to combine antiprotons and positrons to produce a beam of antihydrogen atoms2. This approach has unique advantages, says Yamazaki.

“First of all, we can extract antihydrogen atoms as an intensified beam in a magnetic-field free region, which enables high-resolution spectroscopy. Secondly, the temperature of the antihydrogen atoms can be much higher—say 10 kelvin—which makes it orders of magnitude more efficient to synthesize a usable number of antihydrogen atoms,” explains Yamazaki. “We think we can confirm the beam next year, and if everything goes well, we can also get some spectroscopic results for the first time,” he adds. ALPHA, too, is already making plans for its own laser spectroscopy measurements.

Improving supply

Both experiments could benefit from a new project at CERN, called ELENA, which can deliver lower-energy antiprotons. “We really hope this project will be approved as soon as possible,” says Yamazaki. This could provide a continuous supply of much larger numbers of chilled antiprotons for ALPHA and ASACUSA, which “should have a tremendous impact on both antihydrogen projects,” he notes.

Of both projects’ latest results, he adds: “I feel that these two achievements are really big milestones towards realizing low-energy antimatter physics for the first time.”

About the Researcher: Yasunori Yamazaki

Yasunori Yamazaki was born in Osaka, Japan, in 1949. He graduated from the Department of Physics, Osaka University, in 1973, received his master degree in 1975, and obtained his doctoral degree in 1978 from the Department of Applied Physics at the same institute. He was appointed research associate of the Tokyo Institute of Technology in 1978, associate professor of The University of Tokyo in 1988, and professor at the same university in 1993. He was jointly appointed as chief scientist at RIKEN in 1997. From 2010, he has held the title of distinguished senior scientist of RIKEN and professor emeritus of The University of Tokyo. His research interests are cold antimatter science with antihydrogen atoms as well as applications of beam physics to various fields of natural science, including living cell surgery, micromodification of liquid–solid interfaces and virtual x-ray spectroscopy of relativistic highly charged heavy ions channeling through crystalline targets.

Journal information

1.Andresen, G.B., Ashkezari, M.D., Baquero-Ruiz, M., Bertsche, W., Bowe, P.D., Butler, E., Cesar, C.L., Chapman, S., Charlton, M., Deller, A., et al. Trapped antihydrogen. Nature 468, 673–676 (2010).

2.Enomoto, Y., Kuroda, N., Michishio, K., Kim, C.H., Higaki, H., Nagata, Y., Kanai, Y., Torii, H.A., Corradini, M., Leali, M., et al. Synthesis of cold antihydrogen in a cusp trap. Physical Review Letters 105, 243401 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/hom/6504
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>