An international team of physicists a coherent amplification effect in laser excited dielectrics

Copyright: Uni Kassel

If a transparent dielectric material like water or glass is illuminated by visible or infrared light it is transmitted without loss. This quickly changes if ultra-short laser pulses on the femtosecond timescale (quadrillionth second) are used:

Caused by the high intensities that such laser pulses provide, different interaction mechanisms are able to transfer the transparent material into a metallic like state. The created “free” electrons, similar to a metal, play a significant role in the change of the optical properties associated to the excitation of the material.

Accordingly, pump-probe experiments, utilizing two temporally delayed laser pulses were proven to be a very useful method to investigate the laser-material interaction. Indeed, most experiments show that shortly after the laser excitation, absorption and reflection increase due to the creation of high density of free electrons giving the dielectric material transient metallic properties.

Researchers from the Experimental Physics III located at the University of Kassel, in cooperation with colleagues from the Department of Physics at the University of Aarhus in Denmark, recently performed similar experiments on laser excited sapphire glass.

Much to their surprise, the researchers observed that the absorption of a violet probe pulse is, under certain conditions, replaced by coherent amplification. The physicists could link the observed amplification to the, so far, unobserved LADIE mechanism. While in typical light amplification processes, such as a laser, single photons are doubled, the study suggests that the LADIE process provides a multi photon process, for example making four out of two incident photons.

“It is too early to foresee possible impacts or applications of the LADIE effect”, says Thomas Winkler, scientist at the Kassel Department of Physics. “Yet it provides a more detailed understanding of the light material interaction. However, also the discovery of the LASER in the mid 60s by Theodore Maiman was an unusual discovery that was initially seen as no more than another thrilling aspect of quantum physics. However, today, more than 50 years later, there are no products or technical process in which laser-technology is not involved in a certain way.”

The publication was published on Monday, 18th September 2017 and is available under the following link: https://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys4265.html

For a picture (copyright: Uni Kassel), please see: https://www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2017/NatPhysic…

Contact:
Thomas Winkler
Universität Kassel
Institut für Physik
Tel.: +49 561 804 4319
E-Mail: winkler@physik.uni-kassel.de

Prof. Dr. Thomas Baumert
Universität Kassel
Institut für Physik
Tel: +49 561 804 4452
E-Mail: baumert@physik.uni-kassel.de

http://www.uni-kassel.de

Media Contact

Sebastian Mense idw - Informationsdienst Wissenschaft

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Making diamonds at ambient pressure

Scientists develop novel liquid metal alloy system to synthesize diamond under moderate conditions. Did you know that 99% of synthetic diamonds are currently produced using high-pressure and high-temperature (HPHT) methods?[2]…

Eruption of mega-magnetic star lights up nearby galaxy

Thanks to ESA satellites, an international team including UNIGE researchers has detected a giant eruption coming from a magnetar, an extremely magnetic neutron star. While ESA’s satellite INTEGRAL was observing…

Partners & Sponsors