Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An acoustic cage for electrons

14.11.2017

International team of scientist develops new concept for trapping and manipulating electrons with sound waves

The ability to trap and control electrons and other quasi-particles for the study of isolated single particles as well as many-body systems in a solid-state environment can be of major importance for understanding the behaviour of correlated electrons in technologically relevant materials. Because of their – compared to atoms – extremely small masses, these point-like particles are very fast and mobile.


In a piezo-electric solid (PE), counter-propagating surface-acoustic waves generate a time-dependent, periodic electric potential for electrons confined to a two-dimensional plane, i.e. a two-dimensional electron gas (2DEG); the resulting acoustic lattices are one- or two-dimensional, depending on the geometry of the setup. At high SAW frequencies, the potential can be effectively described by a time-independent pseudo-lattice. The motion of electrons at potential minima can be described by a harmonic oscillator, superimposed by small-amplitude, high-frequency micro-oscillations.

(Graphic: from the original publication)

This, however, makes them hard to hold in place. Now, an international team of scientists around Prof. Ignacio Cirac (Max Planck Institute of Quantum Optics, Garching), and Prof. Mikhail Lukin (Harvard University, USA) have investigated a new way of building a cage for electrons (Physical Review X 7, 24 October 2017).

According to their proposal electrons can be moved or held in place by electric potentials that are generated by acoustic waves on the surfaces of piezoelectric materials. Furthermore, by using counterpropagating acoustic waves lattice structures similar to optical lattices for neutral atoms can be generated.

On the one hand, the scientists provide a general theoretical framework with guidelines to meet the necessary requirements for an experimental realization. On the other hand, they investigate the potential of specific layered semiconductor devices as experimental platforms.

On top of being of fundamental interest for the controlled study of quasi-particles in solid-state settings, the envisioned setup represents a new way for quantum simulations of condensed matter, with the ultimate potential to study yet unexplored parameter regimes, thanks to specific system properties such as ultra-light particle masses, intrinsic electron-phonon cooling and strong inter-particle interactions.

The basic setup described in the paper consists of a layered structure: a thin, quasi two-dimensional film of a semiconducting material such as gallium arsenide, deposited on a substrate, is covered with a piezoelectric material. Two “interdigital transducers” (IDTs), consisting each of two thin film electrodes, are patterned on its surface. They generate counterpropagating “surface acoustic waves” (SAWs), which in turn induce a time-dependent periodic electric potential. This acts on the electrons that are confined in the semiconducting layer. The potential depth is controlled by the power, the lattice spacing by the frequency of the voltage applied to the IDTs.

SAWs have already been used successfully to change the position of an electron or to trap it for the few nanoseconds it takes the soundwaves to ripple along the surface. The new approach instead proposes a quasi-stationary trapping potential. “If the frequency of the sound wave is high enough, the electron’s potential landscape can effectively be described by a time-independent pseudolattice,” explains Johannes Knörzer, doctoral candidate in the Theory Division of Prof. Cirac at MPQ. “The electrons cannot adiabatically follow the rapidly oscillating force, and so they will effectively be trapped close to a potential minimum.”

One focus of the paper is the description of detailed conditions for dynamically trapping and cooling single particles in SAW-induced potentials. “The calculations imply, for example, that a very low temperature is required. Our theoretical treatment is, to some extent, reminiscent to that of trapped ions,” Johannes Knörzer points out. The other focus is the simulation of quantum many-body systems by a system of electrons trapped in acoustic lattices. “The effective dynamics of the electrons in the sound lattices can be captured by the Fermi-Hubbard model, very much like for fermionic ultracold atoms in optical lattices,” Knörzer adds.

The team analyses the viability of the concept for different heterostructures which support high-velocity sound waves. The calculations apply not only to electrons, but also to a variety of so-called “quasiparticles”, such as excitons or holes, that arise in modern solid-state systems. “The wish to gain deeper insight into the properties and interactions of these particles is our motivation to search for trapping mechanisms that bring the generality and flexibility of optical lattices to the solid-state setting,” resumes Prof. Ignacio Cirac. “Our ultimate goal is to understand the behaviour of correlated electrons in technologically relevant materials and molecules. This would pave the way towards building a universal quantum simulator.” Olivia Meyer-Streng

Figure caption:
In a piezo-electric solid (PE), counter-propagating surface-acoustic waves generate a time-dependent, periodic electric potential for electrons confined to a two-dimensional plane, i.e. a two-dimensional electron gas (2DEG); the resulting acoustic lattices are one- or two-dimensional, depending on the geometry of the setup. At high SAW frequencies, the potential can be effectively described by a time-independent pseudo-lattice. The motion of electrons at potential minima can be described by a harmonic oscillator, superimposed by small-amplitude, high-frequency micro-oscillations.
(Graphic: from the original publication)

Original publication:
M. J. A. Schuetz, J. Knörzer, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. Ignacio Cirac
Acoustic Traps and Lattices for Electrons in Semiconductors
Physical Review X 7, 041019 (2017), DOI: 10.1103/PhysRevX.7.041019

Contact:

Prof. Dr. J. Ignacio Cirac
Honorary Professor TU Munich and
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 705
E-mail: ignacio.cirac@mpq.mpg.de

Johannes Knörzer
PhD, Theory Division
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 315
E-mail: johannes.knoerzer@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Essential quantum computer component downsized by two orders of magnitude
14.11.2017 | Institute of Science and Technology Austria

nachricht A “cosmic snake” reveals the structure of remote galaxies
14.11.2017 | Universität Zürich

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Essential quantum computer component downsized by two orders of magnitude

14.11.2017 | Physics and Astronomy

Fuel cell X-ray study details effects of temperature and moisture on performance

14.11.2017 | Materials Sciences

Digital length gauges by WayCon - extremely accurate and versatile

14.11.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>