Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amplification of Sound Waves at Extreme Frequencies

22.02.2016

An electric current through a semiconductor nanostructure amplifies sound waves at ultrahigh frequency. This method allows for novel, highly compact sources of ultrasound, which can serve as diagnostic tool for imaging materials and biological structures with very high spatial resolution.

Ultrasound is an acoustic wave at a frequency well above the human audible limit. Ultrasound in the megahertz range (1 MHz = 106 Hz = 1 million oscillations per second) finds broad application in sonography for, e.g., medical imaging of organs in a body and nondestructive testing of materials. The spatial resolution of the image is set by the ultrasound wavelength.


Changes of the sample reflectivity as a function of the delay time after the pump pulse. The observed oscillations are proportional to the instantaneous amplitude of the sound wave. The blue curve shows the results without the current through the superlattice, the red curve with a current of 1 A. With current the amplitude is always larger than without current. The amplification (the ratio between the red and blue curves) is most pronounced at delay times of 300 ps (1 picosecond (ps) is 10-12 s, one millionth of a millionth of a second), since the amplification takes time. Fig.: MBI

To image objects on the nanoscale (1 nanometer = 10to the-9 m = 1 billionth of a meter), sound waves with a frequency of several hundreds of gigahertz (1 gigahertz (GHz) = 1000 MHz) are required. To develop such waves into a diagnostic tool, novel sources and sound amplification schemes need to provide sufficient sound intensities.

In a recent publication (K. Shinokita et al., Phys. Rev. Lett. 116, 075504 (2016)), researchers from the Max-Born-Institut in Berlin together with colleagues from the Paul-Drude-Institut, Berlin, and the École Normale Supérieure, Paris, have demonstrated a new method for sound amplification in a specially designed semiconductor structure consisting of a sequence of nanolayers. Sound waves with a frequency of 400 GHz are generated and detected with short optical pulses from a laser.

The sound is amplified by interaction with an electric current traveling through the semiconductor in the same direction as the sound waves. The sound amplification is based on a process called "SASER", the Sound Amplification by Stimulated Emission of Radiation, in full analogy to the amplification of light in a laser.

The sound wave stimulates electrons moving with a velocity higher than the sound velocity, to go from a state of high energy to a state of lower energy and, thus, make the sound wave stronger. To achieve a net amplification, it is necessary that there are more electrons in the high-energy than in the lower-energy state. In this way, a 400 GHz sound wave is amplified by a factor of two.

The present work is a proof of principle. For a usable source of high-frequency sound waves, it is necessary to further increase the amplification, which should be possible by improving the design of the structure and, most importantly, better cooling of the semiconductor device. Once such a source is available, it can be used for extending the spatial resolution of sonography towards the scale viruses, a length scale much shorter than the wavelength of visible light.


Original Publication: Physical Review Letters 116, 075504
Strong Amplification of Coherent Acoustic Phonons by Intraminiband Currents in a Semiconductor Superlattice

Keisuke Shinokita, Klaus Reimann, Michael Woerner, Thomas Elsaesser, Rudolf Hey, Christos Flytzanis

Contact
Prof. Klaus Reimann Tel. 030 6392 1476
Dr. Michael Wörner Tel. 030 6392 1470
Prof. Dr. Thomas Elsässer Tel. 030 6392 1400

This article was chosen as an Editor's suggestion, see also: Pumping up the sound

Weitere Informationen:

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.116.075504

Saskia Donath | Forschungsverbund Berlin e.V.

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>