Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ALMA Weighs Supermassive Black Hole at Center of Distant Spiral Galaxy

22.06.2015

Supermassive black holes lurk at the center of every large galaxy. These cosmic behemoths can be millions to billions of times more massive than the Sun. Determining just how massive, however, has been daunting, especially for spiral galaxies and their closely related cousins barred spirals.

In a new proof-of-concept observation, astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have measured the mass of the supermassive black hole at the center of NGC 1097 -- a barred spiral galaxy located approximately 45 million light-years away in the direction of the constellation Fornax.


ALMA (NRAO/ESO/NAOJ), K. Onishi; NASA/ESA Hubble Space Telescope, E. Sturdivant; NRAO/AUI/NSF

Composite image of the barred spiral galaxy NGC 1097. By studying the motion of two molecules, ALMA was able to determine that the supermassive black hole at the galactic center has a mass 140 million times greater than our Sun. The ALMA data is in red (HCO+) and green/orange (HCN) superimposed on an optical image taken by the Hubble Space Telescope.

The researchers determined that this galaxy harbors a black hole 140 million times more massive than our Sun. In comparison, the black hole at the center of the Milky Way is a lightweight, with a mass of just a few million times that of our Sun.

To achieve this result, the research team, led by Kyoko Onishi at SOKENDAI (The Graduate University for Advanced Studies) in Japan, precisely measured the distribution and motion of two molecules -- hydrogen cyanide (HCN) and formylium (HCO+) -- near the central region of the galaxy.

The researchers then compared the ALMA observations to various mathematical models, each corresponding to a different mass of the supermassive black hole. The “best fit” for these observations corresponded to a black hole weighing in at about 140 million solar masses. The results are published in the Astrophysical Journal.

A similar technique was used previously with the CARMA telescope to measure the mass of the black hole at the center of the lenticular galaxy NGC 4526.

“While NGC 4526 is a lenticular galaxy, NGC 1097 is a barred spiral galaxy. Recent observation results indicate the relationship between supermassive black hole mass and host galaxy properties varies depending on the type of galaxies, which makes it more important to derive accurate supermassive black hole masses in various types of galaxies,” Onishi noted.

Currently, astronomers use several methods to derive the mass of a supermassive black hole; the technique used typically depends on the type of galaxy being observed.

Within the Milky Way, powerful optical/infrared telescopes track the motion of stars as they zip around the core of our galaxy. This method, however, is not suitable for distant galaxies because of the extremely high angular resolution it requires.

In place of stars, astronomers also track the motion of megamasers (astrophysical objects that emit intense radio waves and are found near the center of some galaxies), but they are rare; the Milky Way, for example, has none. Another technique is to track the motion of ionized gas in a galaxy’s central bulge, but this technique is best suited to the study of elliptical galaxies, leaving few options when it comes to measuring the mass of supermassive black holes in spiral galaxies.

The new ALMA results, however, demonstrate a previously untapped method and open up new possibilities for the study of spiral and barred spiral galaxies.

“This is the first use of ALMA to make such a measurement for a spiral or barred spiral galaxy,” said Kartik Sheth, an astronomer with the National Radio Astronomy Observatory in Charlottesville, Va., and co-author on the paper. “When you look at the exquisitely detailed observations from ALMA, it’s startling how well they fit in with these well tested models. It’s exciting to think that we can now apply this same technique to other similar galaxies and better understand how these unbelievably massive objects affect their host galaxies.”

Since current theories show that galaxies and their supermassive black holes evolve together -- each affecting the growth of the other -- this new measurement technique could shed light on the relationship between galaxies and their resident supermassive black holes.

Future observations with ALMA will continue to refine this technique and expand its applications to other spiral-type galaxies.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the US National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Contact Information
Charles Blue
cblue@nrao.edu
Phone: 434-296-0314
Mobile: 202-236-6324

Charles Blue | newswise
Further information:
https://public.nrao.edu

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>