Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ALMA Weighs Supermassive Black Hole at Center of Distant Spiral Galaxy

22.06.2015

Supermassive black holes lurk at the center of every large galaxy. These cosmic behemoths can be millions to billions of times more massive than the Sun. Determining just how massive, however, has been daunting, especially for spiral galaxies and their closely related cousins barred spirals.

In a new proof-of-concept observation, astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have measured the mass of the supermassive black hole at the center of NGC 1097 -- a barred spiral galaxy located approximately 45 million light-years away in the direction of the constellation Fornax.


ALMA (NRAO/ESO/NAOJ), K. Onishi; NASA/ESA Hubble Space Telescope, E. Sturdivant; NRAO/AUI/NSF

Composite image of the barred spiral galaxy NGC 1097. By studying the motion of two molecules, ALMA was able to determine that the supermassive black hole at the galactic center has a mass 140 million times greater than our Sun. The ALMA data is in red (HCO+) and green/orange (HCN) superimposed on an optical image taken by the Hubble Space Telescope.

The researchers determined that this galaxy harbors a black hole 140 million times more massive than our Sun. In comparison, the black hole at the center of the Milky Way is a lightweight, with a mass of just a few million times that of our Sun.

To achieve this result, the research team, led by Kyoko Onishi at SOKENDAI (The Graduate University for Advanced Studies) in Japan, precisely measured the distribution and motion of two molecules -- hydrogen cyanide (HCN) and formylium (HCO+) -- near the central region of the galaxy.

The researchers then compared the ALMA observations to various mathematical models, each corresponding to a different mass of the supermassive black hole. The “best fit” for these observations corresponded to a black hole weighing in at about 140 million solar masses. The results are published in the Astrophysical Journal.

A similar technique was used previously with the CARMA telescope to measure the mass of the black hole at the center of the lenticular galaxy NGC 4526.

“While NGC 4526 is a lenticular galaxy, NGC 1097 is a barred spiral galaxy. Recent observation results indicate the relationship between supermassive black hole mass and host galaxy properties varies depending on the type of galaxies, which makes it more important to derive accurate supermassive black hole masses in various types of galaxies,” Onishi noted.

Currently, astronomers use several methods to derive the mass of a supermassive black hole; the technique used typically depends on the type of galaxy being observed.

Within the Milky Way, powerful optical/infrared telescopes track the motion of stars as they zip around the core of our galaxy. This method, however, is not suitable for distant galaxies because of the extremely high angular resolution it requires.

In place of stars, astronomers also track the motion of megamasers (astrophysical objects that emit intense radio waves and are found near the center of some galaxies), but they are rare; the Milky Way, for example, has none. Another technique is to track the motion of ionized gas in a galaxy’s central bulge, but this technique is best suited to the study of elliptical galaxies, leaving few options when it comes to measuring the mass of supermassive black holes in spiral galaxies.

The new ALMA results, however, demonstrate a previously untapped method and open up new possibilities for the study of spiral and barred spiral galaxies.

“This is the first use of ALMA to make such a measurement for a spiral or barred spiral galaxy,” said Kartik Sheth, an astronomer with the National Radio Astronomy Observatory in Charlottesville, Va., and co-author on the paper. “When you look at the exquisitely detailed observations from ALMA, it’s startling how well they fit in with these well tested models. It’s exciting to think that we can now apply this same technique to other similar galaxies and better understand how these unbelievably massive objects affect their host galaxies.”

Since current theories show that galaxies and their supermassive black holes evolve together -- each affecting the growth of the other -- this new measurement technique could shed light on the relationship between galaxies and their resident supermassive black holes.

Future observations with ALMA will continue to refine this technique and expand its applications to other spiral-type galaxies.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the US National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Contact Information
Charles Blue
cblue@nrao.edu
Phone: 434-296-0314
Mobile: 202-236-6324

Charles Blue | newswise
Further information:
https://public.nrao.edu

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>