Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abell 4067 shows collision of two galaxy clusters

20.01.2015

X-ray observations by Max Planck scientists show how the two systems merge

The catalogues of celestial objects contain a galaxy cluster called "Abell 4067". Recent observations with the XMM-Newton space observatory, however, reveal evidence that this object actually constitutes of the merger of two clusters. The smaller system appears to be losing the greater part of its gas.


X-ray image of the galaxy cluster RXCJ2359.5-6042 in the 0.5 to 2 keV energy band, which shows signs of the merger of a small, compact system (with a bright core on the left) with the main, extended cluster. The sharp edge of X-ray emission towards the left is probably the effect of a shock, which itself is not clearly visible. The cone shape of this feature is consistent with a low Mach number impact and an infalling speed of the bullet-like compact cluster of typically 1000 kilometres per second. (Note that distances and velocities in space are often much larger than on Earth: here an actual bullet has a velocity of only a few hundred metres per second).

© MPE


Optical image of the same cluster as in Fig. 1 (greyscale) by the Digitized Sky Survey (DSS), with the X-ray contours overlaid.

© DSS (optical), MPE (X-ray)

The analysis of the data by scientists at the Max Planck Institute for Extraterrestrial Physics also shows that the compact core of the infalling cluster has survived this encounter so far. This core goes cuts right through the central region of the larger cluster, like a bullet, without being disrupted. The layers outside the core, however, are being stripped.

Galaxy clusters are the largest building blocks of our Universe and they are still growing - mainly through collisions with other galaxy clusters. In addition to their hundreds or thousands of galaxies, clusters are filled with hot gas, which emits high-energy X-ray radiation that traces the structure of these huge systems perfectly.

“X-ray observations provide us with the best insight into the structure of galaxy clusters,” says Hans Böhringer, senior scientist at the Max Planck Institute for Extraterrestrial Physics (MPE). Hundreds of galaxy clusters have by now been observed with the modern space-based X-ray telescopes XMM-Newton (ESA) and Chandra (NASA). “In about one out of every twenty or thirty systems we find clear evidence that galaxy clusters are currently undergoing a merger.” None of the previous observations, however, has shown such an interesting picture of a merger as the data obtained recently of the galaxy cluster RXCJ2359.5-6042, also known as Abell 4067.

This system was found as part of a systematic search for galaxy clusters (REFLEX II) in the southern sky of the ROSAT all-sky X-ray survey, performed in the 1990s. Recent, more detailed X-ray observations by the MPE astrophysicists Gayoung Chon and Hans Böhringer revealed that RXCJ2359.5-6042, which is at a distance of 1.35 billion light years, shows the merger of a small, compact cluster with a large, less dense system. The new X-ray image of the system is shown in Fig. 1.

The large, more extended and less dense cluster is traced by the shallow X-ray emission, extended mainly in a north-south direction. Embedded in this cluster is a very compact X-ray source with a tail through the cluster.

“This can be interpreted as the remnant of a small, dense cluster that has fallen into the main cluster,” points out Dr. Chon. “The bright source is clearly extended and its X-ray spectrum matches that of relatively cool gas at a temperature of less than 20 million degrees (about 1.5 keV), while the gas of the main cluster has a temperature of about 40 million degrees (around 3.5 keV).”

As the small system penetrated the larger cluster, its gas halo has been stripped and stretched into a tail; its outer parts have mixed into the gas of the main cluster. The compact, cool core of the infalling system - the former centre of the small cluster - has survived the collision so far. This interpretation is supported by the optical image of the system (see Fig. 2), which shows a big galaxy at the centre of the compact remnant, as found in the majority of all galaxy clusters.

“We can observe the process of the merger very clearly here because the collision happens very close to the plane of the sky, i.e. face-on,” explains Dr. Chon. “And we can even predict the probable fate of this merger over the next billion years: The gas in the tail will mix with the gas of the main cluster and the cool core will eventually find its way to the centre of the joint system by gravity to form the central cool core of an even more massive galaxy cluster.”

To gain further insight into how the infalling cluster gets stripped and how the gasses of the two components mix, Chon and Böhringer have already been granted seven times deeper observations of this object with the XMM-Newton observatory. A better understanding of the processes in this most transparent system will help to better understand the growth of galaxy clusters in general.


Contact

Dr. Hannelore Hämmerle
Press officer
Max Planck Institute for Extraterrestrial Physics, Garching
Phone: +49 89 30000-3980
Email: hannelore.haemmerle@mpe.mpg.de

Dr. Hans Böhringer
Max Planck Institute for Extraterrestrial Physics, Garching
Phone: +49 89 30000-3347
Email: hxb@mpe.mpg.de
 
Dr. Gayoung Chon
Max Planck Institute for Extraterrestrial Physics, Garching
Phone: +49 89 30000-3894
Fax: +49 89 30000-3569
Email: gchon@mpe.mpg.de


Original publication
Gayoung Chon, Hans Böhringer

Witnessing a merging bullet being stripped in the galaxy cluster RXCJ2359.3-6042

Astronomy & Astrophysics, Januar 2015

Source

Dr. Hannelore Hämmerle | Max Planck Institute for Extraterrestrial Physics, Garching

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>