Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Abell 4067 shows collision of two galaxy clusters


X-ray observations by Max Planck scientists show how the two systems merge

The catalogues of celestial objects contain a galaxy cluster called "Abell 4067". Recent observations with the XMM-Newton space observatory, however, reveal evidence that this object actually constitutes of the merger of two clusters. The smaller system appears to be losing the greater part of its gas.

X-ray image of the galaxy cluster RXCJ2359.5-6042 in the 0.5 to 2 keV energy band, which shows signs of the merger of a small, compact system (with a bright core on the left) with the main, extended cluster. The sharp edge of X-ray emission towards the left is probably the effect of a shock, which itself is not clearly visible. The cone shape of this feature is consistent with a low Mach number impact and an infalling speed of the bullet-like compact cluster of typically 1000 kilometres per second. (Note that distances and velocities in space are often much larger than on Earth: here an actual bullet has a velocity of only a few hundred metres per second).


Optical image of the same cluster as in Fig. 1 (greyscale) by the Digitized Sky Survey (DSS), with the X-ray contours overlaid.

© DSS (optical), MPE (X-ray)

The analysis of the data by scientists at the Max Planck Institute for Extraterrestrial Physics also shows that the compact core of the infalling cluster has survived this encounter so far. This core goes cuts right through the central region of the larger cluster, like a bullet, without being disrupted. The layers outside the core, however, are being stripped.

Galaxy clusters are the largest building blocks of our Universe and they are still growing - mainly through collisions with other galaxy clusters. In addition to their hundreds or thousands of galaxies, clusters are filled with hot gas, which emits high-energy X-ray radiation that traces the structure of these huge systems perfectly.

“X-ray observations provide us with the best insight into the structure of galaxy clusters,” says Hans Böhringer, senior scientist at the Max Planck Institute for Extraterrestrial Physics (MPE). Hundreds of galaxy clusters have by now been observed with the modern space-based X-ray telescopes XMM-Newton (ESA) and Chandra (NASA). “In about one out of every twenty or thirty systems we find clear evidence that galaxy clusters are currently undergoing a merger.” None of the previous observations, however, has shown such an interesting picture of a merger as the data obtained recently of the galaxy cluster RXCJ2359.5-6042, also known as Abell 4067.

This system was found as part of a systematic search for galaxy clusters (REFLEX II) in the southern sky of the ROSAT all-sky X-ray survey, performed in the 1990s. Recent, more detailed X-ray observations by the MPE astrophysicists Gayoung Chon and Hans Böhringer revealed that RXCJ2359.5-6042, which is at a distance of 1.35 billion light years, shows the merger of a small, compact cluster with a large, less dense system. The new X-ray image of the system is shown in Fig. 1.

The large, more extended and less dense cluster is traced by the shallow X-ray emission, extended mainly in a north-south direction. Embedded in this cluster is a very compact X-ray source with a tail through the cluster.

“This can be interpreted as the remnant of a small, dense cluster that has fallen into the main cluster,” points out Dr. Chon. “The bright source is clearly extended and its X-ray spectrum matches that of relatively cool gas at a temperature of less than 20 million degrees (about 1.5 keV), while the gas of the main cluster has a temperature of about 40 million degrees (around 3.5 keV).”

As the small system penetrated the larger cluster, its gas halo has been stripped and stretched into a tail; its outer parts have mixed into the gas of the main cluster. The compact, cool core of the infalling system - the former centre of the small cluster - has survived the collision so far. This interpretation is supported by the optical image of the system (see Fig. 2), which shows a big galaxy at the centre of the compact remnant, as found in the majority of all galaxy clusters.

“We can observe the process of the merger very clearly here because the collision happens very close to the plane of the sky, i.e. face-on,” explains Dr. Chon. “And we can even predict the probable fate of this merger over the next billion years: The gas in the tail will mix with the gas of the main cluster and the cool core will eventually find its way to the centre of the joint system by gravity to form the central cool core of an even more massive galaxy cluster.”

To gain further insight into how the infalling cluster gets stripped and how the gasses of the two components mix, Chon and Böhringer have already been granted seven times deeper observations of this object with the XMM-Newton observatory. A better understanding of the processes in this most transparent system will help to better understand the growth of galaxy clusters in general.


Dr. Hannelore Hämmerle
Press officer
Max Planck Institute for Extraterrestrial Physics, Garching
Phone: +49 89 30000-3980

Dr. Hans Böhringer
Max Planck Institute for Extraterrestrial Physics, Garching
Phone: +49 89 30000-3347
Dr. Gayoung Chon
Max Planck Institute for Extraterrestrial Physics, Garching
Phone: +49 89 30000-3894
Fax: +49 89 30000-3569

Original publication
Gayoung Chon, Hans Böhringer

Witnessing a merging bullet being stripped in the galaxy cluster RXCJ2359.3-6042

Astronomy & Astrophysics, Januar 2015


Dr. Hannelore Hämmerle | Max Planck Institute for Extraterrestrial Physics, Garching

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>