Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers

18.01.2017

Like cosmic lighthouses sweeping the universe with bursts of energy, pulsars have fascinated and baffled astronomers since they were first discovered 50 years ago. In two studies, international teams of astronomers suggest that recent images from NASA's Chandra X-ray Observatory of two pulsars -- Geminga and B0355+54 -- may help shine a light on the distinctive emission signatures of pulsars, as well as their often perplexing geometry.

Pulsars are a type of neutron star that are born in supernova explosions when massive stars collapse. Discovered initially by lighthouse-like beams of radio emission, more recent research has found that energetic pulsars also produce beams of high energy gamma rays.


An artist's representation of what the three unusual tails of the pulsar Geminga may look like close up. NASA's Chandra X-ray Observatory is giving astronomers a better look at pulsars and their associated pulsar wind nebulae, enabling new constraints on the geometry of pulsars and why they look the way they do from Earth.

Credit: Nahks Tr'Ehnl

Interestingly, the beams rarely match up, said Bettina Posselt, senior research associate in astronomy and astrophysics, Penn State. The shapes of observed radio and gamma-ray pulses are often quite different and some of the objects show only one type of pulse or the other. These differences have generated debate about the pulsar model.

"It's not fully understood why there are variations between different pulsars," said Posselt. "One of the main ideas here is that pulse differences have a lot to do with geometry -- and it also depends on how the pulsar's spin and magnetic axes are oriented with respect to line of sight whether you see certain pulsars or not, as well as how you see them."

Chandra's images are giving the astronomers a closer than ever look at the distinctive geometry of the charged particle winds radiating in X-ray and other wavelengths from the objects, according to Posselt. Pulsars rhythmically rotate as they rocket through space at speeds reaching hundreds of kilometers a second.

Pulsar wind nebulae (PWN) are produced when the energetic particles streaming from pulsars shoot along the stars' magnetic fields, form tori -- donut-shaped rings -- around the pulsar's equatorial plane, and jet along the spin axis, often sweeping back into long tails as the pulsars' quickly cut through the interstellar medium.

"This is one of the nicest results of our larger study of pulsar wind nebulae," said Roger W. Romani, professor of physics at Stanford University and principal investigator of the Chandra PWN project. "By making the 3-D structure of these winds visible, we have shown how one can trace back to the plasma injected by the pulsar at the center. Chandra's fantastic X-ray acuity was essential for this study, so we are happy that it was possible to get the deep exposures that made these faint structures visible."

A spectacular PWN is seen around the Geminga pulsar. Geminga -- one of the closest pulsars at only 800 light years away from Earth -- has three unusual tails, said Posselt. The streams of particles spewing out of the alleged poles of Geminga -- or lateral tails -- stretch out for more than half a light year, longer than 1,000 times the distance between the Sun and Pluto. Another shorter tail also emanates from the pulsar.

The astronomers said that a much different PWN picture is seen in the X-ray image of another pulsar called B0355+54, which is about 3,300 light years away from Earth. The tail of this pulsar has a cap of emission, followed by a narrow double tail that extends almost five light years away from the star.

While Geminga shows pulses in the gamma ray spectrum, but is radio quiet, B0355+54 is one of the brightest radio pulsars, but fails to show gamma rays.

"The tails seem to tell us why that is," said Posselt, adding that the pulsars' spin axis and magnetic axis orientations influence what emissions are seen on Earth.

According to Posselt, Geminga may have magnetic poles quite close to the top and bottom of the object, and nearly aligned spin poles, much like Earth. One of the magnetic poles of B0355+54 could directly face the Earth. Because the radio emission occurs near the site of the magnetic poles, the radio waves may point along the direction of the jets, she said. Gamma-ray emission, on the other hand, is produced at higher altitudes in a larger region, allowing the respective pulses to sweep larger areas of the sky.

"For Geminga, we view the bright gamma ray pulses and the edge of the pulsar wind nebula torus, but the radio beams near the jets point off to the sides and remain unseen," Posselt said.

The strongly bent lateral tails offer the astronomers clues to the geometry of the pulsar, which could be compared to either jet contrails soaring into space, or to a bow shock similar to the shockwave created by a bullet as it is shot through the air.

Oleg Kargaltsev, assistant professor of physics, George Washington University, who worked on the study on B0355+54, said that the orientation of B0355+54 plays a role in how astronomers see the pulsar, as well. The study is available online in arXiv.

"For B0355+54, a jet points nearly at us so we detect the bright radio pulses while most of the gamma-ray emission is directed in the plane of the sky and misses the Earth," said Kargaltsev. "This implies that the pulsar's spin axis direction is close to our line-of-sight direction and that the pulsar is moving nearly perpendicularly to its spin axis."

Noel Klingler, a graduate research assistant in physics, George Washington University, and lead author of the B0355+54 paper, added that the angles between the three vectors -- the spin axis, the line-of-sight, and the velocity -- are different for different pulsars, thus affecting the appearances of their nebulae.

"In particular, it may be tricky to detect a PWN from a pulsar moving close to the line-of-sight and having a small angle between the spin axis and our line-of-sight," said Klingler.

In the bow-shock interpretation of the Geminga X-ray data, Geminga's two long tails and their unusual spectrum may suggest that the particles are accelerated to nearly the speed of light through a process called Fermi acceleration. The Fermi acceleration takes place at the intersection of a pulsar wind and the interstellar material, according to the researchers, who report their findings on Geminga in the current issue of Astrophysical Journal.

Although different interpretations remain on the table for Geminga's geometry, Posselt said that Chandra's images of the pulsar are helping astrophysicists use pulsars as particle physics laboratories. Studying the objects gives astrophysicists a chance to investigate particle physics in conditions that would be impossible to replicate in a particle accelerator on earth.

"In both scenarios, Geminga provides exciting new constraints on the acceleration physics in pulsar wind nebulae and their interaction with the surrounding interstellar matter," she said.

###

Other team members include George C. Pavlov, senior scientist in astronomy and astrophysics, Penn State; Pat O. Slane, lecturer and senior astrophysicist, Harvard Smithsonian Center for Astrophysics; Roger Romani, professor of physics, Stanford University; Niccolo Bucciantini, permanent researcher, INAF Osservatorio Astorfisico di Arcetri; Andrei M. Bykov, head of the Laboratory for High Energy Astrophysics, Ioffe Physical-Technical Institute; Martin C. Weisskopf, project scientist, NASA/Marshall Space Flight Center; Stephen Chi-Yung Ng, assistant professor of physics, University of Hong Kong.

Additional team members for the study on B0355+54 include: Blagoy Rangelov, postdoctoral researcher, George Washington University; Tea Temim, JWST Support Scientist, Space Telescope Science Institute; Douglas A. Swartz, research scientist, Marshall Space Flight Center and Rolf Buehler, staff scientist, DESY Zeuthen.

NASA and the Russian Science Foundation supported this work.

Media Contact

Matt Swayne
mls29@psu.edu
814-865-9481

 @penn_state

http://live.psu.edu 

Matt Swayne | EurekAlert!

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>