Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A signal boost for molecular microscopy

12.07.2016

Cavity-enhanced Raman-scattering reveals information on structure and properties of carbon nanotubes.

Carbon nanotubes can be produced with a variety of shapes and properties and are therefore of much interest for widespread applications in fields as diverse as electronics, photonics, nanomechanics, and quantum optics. Hence it is important to have a tool at hand that allows to determine these properties in a quick and precise way.


Schematic illustration of the experiment.

Graphic: MPQ, Laser Spectroscopy Division

Raman spectroscopy is particularly sensitive for the chemical structure that gives rise to these properties. However, the signals are intrinsically weak and call for enhancement techniques. Now, a team of researchers of the Laser Spectroscopy Division of Prof. Theodor W. Hänsch (Director at the Max Planck Institute of Quantum Optics and Chair of Experimental Physics at the Ludwig-Maximilians-Universität, Munich) has developed a technique, where an optical microcavity is used to enhance Raman scattering signals, and utilized it for molecular diagnostics by combined Raman and absorption imaging.

In contrast to other techniques, the new approach only relies on increased vacuum fluctuations of the electromagnetic field inside a cavity, which enables significant enhancement without undesired background, and thereby renders the technique a promising tool for molecular imaging. (Nature Communications, 12 July 2016)

Each molecular species has its own fingerprint of vibrational frequencies which carries information about its chemical structure. Raman spectroscopy allows to optically detect the vibrational spectrum in a powerful manner by inelastic light scattering.

As an optical technique, it can enable spatial imaging and thereby combine chemical contrast with high spatial resolution. This capability opens up a large variety of applications for Raman microscopy, ranging from the analysis of biological samples to the characterization of nanomaterials and industrial process monitoring.

In the present study, individual carbon nanotubes are investigated. Nanotubes come along in a variety of diameters and can be either metallic or semiconducting. Raman spectroscopy is particularly sensitive to the molecular structure that governs these properties, and Raman imaging allows to determine this for individual nanotubes. However, conventional Raman scattering suffers from inherently low signal, which is particularly severe for imaging applications and when studying individual nanosystems.

“Our approach is to place the sample of nanotubes, dispersed on a substrate, inside of a microscopic cavity, where optical resonances can be harnessed to enhance the Raman scattering process. At the same time, the cavity can be scanned across the sample and focusses the light to a spot size not too far from the diffraction limit, such that high resolution images can be generated”, explains Dr. David Hunger, one of the scientists working on the project. “The cavity amplifies both the Raman scattering process as well as absorption from the sample. This allows one to combine ultrasensitive absorption microscopy with Raman imaging within a single measurement.”

To make the cavity enhancement effect large, ultimately small cavities capable of storing light for many thousands of circulations are required – which is a particular challenge when in addition scanning capabilities for imaging purposes are desired. In the microcavity setup, developed by Dr. David Hunger and his team, one side of the resonator is made of a plane mirror that serves at the same time as a carrier for the sample under investigation. The counterpart is a strongly curved micro mirror on the end facet of an optical fibre. Laser light is coupled into the resonator through this fibre.

The plane mirror is moved point by point with respect to the fibre in order to bring the sample step by step into the focus of the cavity mode. At the same time, the distance between both mirrors is adjusted such that the resonance condition for the cavity is matched with a resonance of a Raman scattering process. This requires positioning accuracy in the range of tens of picometers.

“To obtain a full Raman spectrum, we step-wise tune the mirror separation to sweep a cavity resonance across the desired spectral range and collect the cavity-enhanced Raman scattering signal,” explains Thomas Hümmer, the leading PhD student at the experiment. “Since the cavity resonances are extremely narrow, this can lead to a spectral resolution way beyond the capabilities of conventional Raman spectrometers.”

At the same time, the Raman signal is strongly enhanced, due to the so-called Purcell effect. This effect comes from the increased vacuum fluctuations and the large photon lifetime inside the microcavity. In the experiment, this leads to an enhancement of the resonant light by up to a factor 320. When comparing the net signal obtained from a single Raman line from the cavity to the signal obtained with the best possible conventional microscope, the cavity experiment achieves a more than 6-fold increase. Further improvements should allow to boost this enhancement by several orders of magnitude in the future.

The full potential of the technique is then demonstrated by cavity-enhanced hyperspectral imaging. In such a measurement, cavity-enhanced Raman spectra are recorded at many locations on the mirror, and a spatial image can be constructed, displaying e.g. the strength or the line shape of Raman lines. “In our experiment we study one particular Raman transition, which is sensitive to the diameter and the electronic properties of the nanotube. From the hyperspectral image we can deduce the size of a large set of individual tubes and determine whether they are metallic or semiconducting,” explains Thomas Hümmer. Such an analysis can provide crucial information about a sample.

The applicability of the method to a large variety of samples makes it a promising tool for single molecule Raman imaging. Furthermore, the scheme could be extended to build Raman lasers with a variety of novel materials, or it might be used to gain quantum control over molecular vibrations. [DH/OM]

Original publication:

Thomas Hümmer, Jonathan Noe, Matthias Hofmann, Theodor W. Hänsch, Alexander Högele, David Hunger
Cavity-enhanced Raman microscopy of individual carbon nanotubes
Nature Communications, 12 July 2016, DOI: 10.1038/NCOMMS12155

Contact:

Dr. David Hunger
Max Planck Institute of Quantum Optics
Ludwig-Maximilians-Universität, Munich
Schellingstr. 4 /III
80799 Munich, Germany
Phone: +49 (0)89 / 21 80 - 3937
E-mail: david.hunger@physik.lmu.de

Prof. Dr. Theodor W. Hänsch
Professor of Experimental Physics,
Ludwig-Maximilians-Universität, Munich
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -712
E-mail: t.w.haensch@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>