Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Sharp View into Black Holes

22.04.2015

Joint observations by the APEX telescope in Chile and Antarctica's largest astronomical telescope come closer to making detailed images of the supermassive black hole in the centre of the Milky Way, up to its very edge, the "event horizon”. Astronomers from the Max Planck Institute for Radio Astronomy have participated in these successful observations in the framework of the Event Horizon Telescope – a virtual telescope as big as planet Earth.

Astronomers building an Earth-sized virtual telescope capable of photographing the event horizon of the black hole at the centre of our Milky Way have extended their instrument to the bottom of the Earth – the South Pole – thanks to recent efforts by a team of astronomers with participation of the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany.


The South Pole Telescope (SPT) and the Atacama Pathfinder Experiment (APEX) joined together in a VLBI experiment for the first time in January 2015.

Dan Marrone/University of Arizona


The 10-meter radio telescope at the South Pole (top) and the Atacama Pathfinder Experiment in Chile (bottom). The baseline for the VLBI experiment with both telescopes is approximately 7,000 km.

Dan Marrone/UoA; ESO/B. Tafreshi (twanight.org)

Last December, an international team of astronomers flew to the Southern Hemisphere: German, Chilean and Korean scientists led by Alan Roy of the MPIfR, traveled to Atacama, Chile, and American scientists led by Dan Marrone of the University of Arizona flew to the South Pole to arrange the telescopes into the largest virtual telescope ever built – the Event Horizon Telescope, or EHT. By combining telescopes across the Earth, the EHT will take the first detailed pictures of black holes.

"The goals of the EHT are to test Einstein's theory of general relativity, understand how black holes eat and generate relativistic outflows, and to prove the existence of the event horizon, or 'edge,' of a black hole," says Dan Marrone.

APEX, which recorded successful joint observations with the Atacama Large Millimetre Array (ALMA) on 13 January 2015, with a virtual telescope of 2.08 km in size, has now been connected with the SPT, more than 7,000 km away. This is the latest addition to an array of telescopes spread out across the globe and linked using a technique known as Very Long Baseline Interferometry, or VLBI.

Larger telescopes can make sharper observations, and interferometry allows multiple telescopes to act like a single telescope as large as the separation – or "baseline" – between them. Using VLBI, the sharpest observations can be achieved by making the separation between telescopes as large as possible.

“To make this work we had to bring cutting edge technology to some of the most remote places on Earth”, says Alan Roy. “It is a logistic challenge to include an increasing number of telescopes from Hawaii to Europe, from North America to Chile and to the South Pole to provide us with much improved image quality and sharpness.”

Even though the Milky Way’s black hole, known as Sagittarius A* (pronounced ‘A-star’), is 4 million times more massive than the sun, it is tiny to the eyes of astronomers. Smaller than Mercury’s orbit around the sun, yet almost 26,000 light years away, studying its event horizon in detail is equivalent to standing in New York and reading the date on a cent in Germany.

With its unprecedented resolution, more than 1,000 times better than the Hubble Telescope, the EHT will see swirling gas on its final plunge over the event horizon, never to regain contact with the rest of the universe. If the theory of general relativity is correct, the black hole itself will be invisible because not even light can escape its immense gravity. However, it might still be seen as a silhouette against the background.

First postulated by Albert Einstein’s General Theory of Relativity, the existence of black holes has since been supported by decades’ worth of astronomical observations. Most if not all galaxies are now believed to harbour a supermassive black hole at their centre, and smaller ones formed from dying stars should be scattered among their stars. The Milky Way is known to be home to about 25 smallish black holes ranging from five to 10 times the sun’s mass. But never has it been possible to directly observe and image one of these cosmic oddities.

For their preliminary observations, the joint telescopes pointed to two known black holes, Sagittarius A* in our galaxy, and another, located 10 million light years away in a galaxy named Centaurus A. For this experiment, the APEX telescope in Chile and the SPT in Antarctica observed together, despite being nearly 7,000 km apart.

Their detections are the highest-resolution observations ever made of either object in the Southern sky, beating the previous record of peering into the heart of an active galactic nucleus by a factor of 10. Detecting a compact feature in Centaurus A at the resolution of 50 microarcseconds is equivalent to measuring an object of 150 times the gravitational radius of the black hole at its centre, believed to have a mass of 70 million solar masses.

“Centaurus A is not visible from central Europe and it has always been on our wish list”, says Alan Roy who knows the source quite well from Australia where he grew up. “And it is very impressive to detect Sagittarius A*, the central source of our Milky Way, at such high resolution.”

The addition of the SPT enhances the annual EHT experiments that combine telescopes all over the world. Several new telescopes have been preparing to join the EHT in the next year, meaning that the next experiment will be the largest both geographically and with regard to the number of telescopes involved. The engagement of the MPIfR is present through APEX and the IRAM telescopes in Pico Veleta (Spain) and Plateau de Bure (France), all operating at a wavelength as short as 1.3 mm.

The Atacama Pathfinder Experiment (APEX) is a collaboration between the Max Planck Institute for Radio Astronomy (MPIfR), Onsala Space Observatory (OSO), and the European Southern Observatory (ESO) to construct and operate a modified prototype antenna of ALMA (Atacama Large Millimetre Array) as a single dish on the Chajnantor plateau at an altitude of 5,100 metres above sea level (Atacama Desert, Chile). The telescope was manufactured by VERTEX Antennentechnik in Duisburg, Germany. The operation of the telescope is entrusted to ESO.

The South Pole telescope (SPT) is managed by an international research collaboration led by the University of Chicago. The NSF-funded Physics Frontier Center of the Kavli Institute for Cosmological Physics, the Kavli Foundation and the Gordon and Betty Moore Foundation provide partial support.

Contact:

Dr. Alan Roy,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49-228-525-191
E-mail: aroy@mpifr-bonn.mpg.de

Prof. Dr. Anton Zensus,
Head of „Radio Astronomy / VLBI“ research department
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49-228-525-378
E-mail: azensus@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/announcements/2015/2

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>