Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Quantum of Light for Materials Science


Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light.

Scientists of the Max-Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg and the Fritz Haber Institute of the Max Planck Society in Berlin have now shown how the effects of the photons can be properly included in such calculations.

The charge density of an electron (in blue) changes its form due to the interaction with photons (in red).

Picture: © J.M. Harms/MPSD

This study opens up the possibility to predict and control the change of material properties due to the interaction with light particles from first principles. The study is reported today in Proceedings of the National Academy of Sciences.

The basic building blocks of atoms, molecules and solids are positively charged nuclei and negatively charged electrons. Their mutual interactions determine most physical and chemical properties of matter, such as the electrical conductivity or the absorption of light.

The laws that guide this delicate interplay between electrons and nuclei are those of quantum electrodynamics (QED), in which particles interact via the exchange of photons, which are the quanta of light. However, the equations of QED are so complex that in practice scientists have to simplify them to be able to make any prediction for real materials.

A very common simplification in quantum chemistry and solid-state physics is to neglect the quantum nature of light. Although this assumption works well for many applications, recent experiments have uncovered situations where the quantum nature of the photons can dramatically change the material properties and give rise to new collective behavior and phenomena.

The standard simulation techniques usually neglect the photons. In order to simulate such situations on a computer, the theory department of the MPSD, headed by Prof. Angel Rubio, has thus developed a novel theoretical method that also includes the interaction with photons.

The basic idea is to treat the full QED system of particles and photons as a quantum fluid. Here the particles are represented by a charge current, and the photons by a classical electromagnetic field that acts on the current in a very complex manner. In their current work, the researchers have shown how this approach can exactly describe the dynamics of an electron that is trapped on a surface and that strongly interacts with photons.

“The advantage of this reformulation of the coupled electron-photon problem is that it allows for approximations that treat photons and particles on equal footing.,” says Johannes Flick, one of the lead authors of the work, “In this way we can come up with new simulation techniques that do not neglect the photons while still being simple enough to be practical," adds Michael Ruggenthaler, second lead author of the article.

In a next step after this proof-of-principle, Rubio’s team wants to use the developed technique to investigate complex systems in situations where photons are assumed to play an important role and hence learn how this modifies the properties of materials. This could provide a new way to control and alter chemical reactions in complex systems such as biomolecules and to design new states of matter.

Contact person:
Dr. Michael Ruggenthaler
Max Planck Institute for the Structure and Dynamics of Matter
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
+49 (0)40 8998-6554

Original publication:
J. Flick, M. Ruggenthaler, H. Appel, and A. Rubio, “Kohn–Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space,” Proceedings of the National Academy of Sciences (2015), DOI: 10.1073/pnas.1518224112

Weitere Informationen: Original publication Research group of Prof. Dr. Angel Rubio Max Planck Institute for the Structure and Dynamics of Matter

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>