Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing a photon without absorbing it: MPQ scientists can detect an optical photon twice

15.11.2013
All current methods of detecting light share a common property: absorption and thus destruction of a photon. A team of scientists in the Quantum Dynamics Division of Prof. Gerhard Rempe at the Max-Planck-Institute of Quantum Optics has now for the first time realized a device which leaves the photon untouched upon detection (Science Express, 14 November 2013).

Light is of fundamental importance. It allows us to see the world around us and record pictures of our environment. It enables communication over long distances through optical fibers. All current methods of detecting light share a common property: absorption and thus destruction of a photon.


Using a single atom trapped in an optical resonator, the presence of a reflected photon can be detected nondestructively. MPQ, Quantum Dynamics Division

It has been a long-standing dream to be able to watch individual photons fly by without absorbing them. A team of scientists in the Quantum Dynamics Division of Prof. Gerhard Rempe at the Max-Planck-Institute of Quantum Optics has now for the first time realized a device which leaves the photon untouched upon detection (Science Express, 14 November 2013).

In the experiment, the incoming photon is reflected off an optical resonator containing a single atom prepared in a superposition state. The reflection changes the superposition phase which is then measured to trace the photon. The new method opens up the perspective to dramatically increase the detection efficiency of single light quanta and has important implications for all experiments where photons are used to encode and communicate quantum information.

The key elements in the experiment are a single rubidium atom and an optical cavity. The latter is a resonator for light that is made of two highly-reflecting mirrors at a very small distance. The atom is trapped at the center of the cavity, where light forces strongly confine it in all three dimensions. It exhibits two different ground states, each characterized by its specific transition energy to the next excited state. To test the detector, the cavity is irradiated with a series of very faint lasers pulses that contain on average much less than a single photon.

In one of its ground states, the atom is off-resonant with both, the cavity and an impinging photon. In this case, the photon will enter the cavity, but not interact with the atom. Because of the special properties of the cavity, the photon will leave it on the same path it entered. In the other ground state, the atom is resonant with both, the cavity and the impinging photon.

In this case, atom and cavity represent a strongly coupled system with properties distinctively different from those of the individual systems. In contrast to the first case, a photon, which is on resonance with the cavity, has no chance to get into it. Instead, it is reflected from the first mirror. In either case, the fragile light quantum is reflected rather than absorbed and destroyed.

“However, the photon has left its trace in the atom,” Andreas Reiserer, doctoral student on the experiment and first author of the publication, explains. “The trick is that we prepare the atom in a superposition of the two ground states. The very moment the photon is reflected from the cavity, the resonant state experiences a phase shift relative to the off-resonant one. This phase shift can then be read out from the atom. In this way, the photon has survived its detection with its properties, for example its pulse shape or polarization, untouched.”

The phase shift of the atomic state is detected using a well-known technique: “Loosely speaking, the atom lights up when probed after reflection of a photon,” says Dr. Stephan Ritter, scientist at the experiment. In order to prove that the nondestructive detection works, the reflected photons are also registered by conventional photodetectors. “In this way, we detect the photon twice, which is impossible with destructive detectors alone. In our proof-of-principle experiment we have achieved a single-photon detection efficiency of 74 %, which is already more than the 60% of typical destructive detectors.” Ritter says. “The achieved value is not fundamentally limited, but due to some imperfections that we can work on in the future.”

The ability to observe single photons without destroying them or changing any of their degrees of freedom opens the perspective for a number of new experiments. A single photon can be detected repeatedly by combining several nondestructive devices. This also provides new possibilities for using single photons in quantum communication and quantum information processing. The successful transfer of a photon in a quantum network could be detected without destroying the fragile quantum information encoded in it. Based on the mechanism used for single-photon detection, it should also be possible to realize a deterministic, universal quantum gate between a reflected single photon and the single atom and even between two photons. Because quantum gates are the functional building blocks of a quantum computer, this is a long-standing dream in optical quantum computing. Olivia Meyer-Streng

Original Publication:
Andreas Reiserer, Stephan Ritter, and Gerhard Rempe
Nondestructive Detection of an Optical Photon,
Science Express, 14 November 2013, DOI: 10.1126/science.1246164
Contact:
Prof. Dr. Gerhard Rempe
Director at Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 (0) 89 / 32905 -701
Fax: +49 (0) 89 / 32905 -311
E-mail: gerhard.rempe@mpq.mpg.de
Dr. Stephan Ritter
Max-Planck-Institute of Quantum Optics
Phone: +49 (0) 89 / 32905 -728
Fax: +49 (0) 89 / 32905 -395
E-mail:stephan.ritter@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>