Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new spin on quantum computing: Scientists train electrons with microwaves

16.02.2016

Experiment with Berkeley lab-developed material shows promise for quantum information processing

In what may provide a potential path to processing information in a quantum computer, researchers have switched an intrinsic property of electrons from an excited state to a relaxed state on demand using a device that served as a microwave "tuning fork."


Like the classical tuning fork slung from guitar strings in this photo, scientists used a device that worked like a microwave tuning fork to switch a fundamental property of electrons on demand in a silicon-bismuth sample developed at Berkeley Lab.

Credit: Flickr/Pierre Guinoiseau

The team's findings could also lead to enhancements in magnetic resonance techniques, which are widely used to explore the structure of materials and biomolecules, and for medical imaging.

The international research team, which included scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), demonstrated how to dramatically increase the coupling of microwaves in a specially designed superconducting cavity to a fundamental electron property called spin--which, like a coin, can be flipped.

By zapping an exotic silicon material developed at Berkeley Lab with the microwaves, they found that they could rapidly change the electron spins from an excited state to a relaxed, ground state by causing the electrons to emit some of their energy in the form of microwave particles known as photons.

Left on their own, the electron spins would be extremely unlikely to flip back to a relaxed state and to also emit a photon - the natural rate for this light-emitting effect, known as the Purcell effect, is about once every 10,000 years. The experiment demonstrated an accelerated, controllable relaxation of electron spins and the release of a microwave photon in about 1 second, said Thomas Schenkel, a physicist in Berkeley Lab's Accelerator Technology and Applied Physics Division who led the design and development of the silicon-bismuth sample used in the experiment.

"It's like a juggler who throws the balls up, and the balls come down 1,000 times faster than normal, and they also emit a microwave flash as they drop," he said. The results were published online Feb. 15 in the journal Nature.

"Our results are highly significant for quantum information processing," said Patrice Bertet, a quantum electronics scientist at the French Atomic Energy Commission (CEA) who led the experiment. "Indeed, they are a first step toward the strong coupling of individual electron spins to microwave photons, which could form the basis of a new spin-based quantum computer architecture."

John Morton, a professor at the London Center for Nanotechnology and co-author of the study, said, "Our ultimate aim is to find a link between quantum information that is fixed and quantum information that can be transported by photons."

In today's computers, information is stored as individual bits, and each bit can either be a one or a zero. Quantum computers, though, could conceivably be exponentially more powerful than modern computers because they would use a different kind of bit, called a qubit, that because of the weird ways of quantum mechanics can simultaneously behave as both a one and a zero.

A coupled array of qubits would allow a quantum computer to perform many, many calculations at the same time, and electron spins are candidates for qubits in a quantum computer. The latest study shows how the microwave photons could work in concert with the spins of electrons to move information in a new type of computer.

"What we need now is ways to wire up these systems--to couple these spins together," Morton said. "We need to make coupled qubits that can perform computations."

In the experiment, conducted at CEA in France, a small sample of a highly purified form of silicon was implanted with a matrix of bismuth atoms, and a superconducting aluminum circuit was deposited on top to create a high-quality resonant cavity that allowed precise tuning of the microwaves. The electron spins of the bismuth atoms were then flipped into the excited, "spin-up" state.

The microwave cavity was then tuned, like a musical tuning fork, to a particular resonance that coaxed the spins into emitting a photon as they flipped back to a relaxed state. The cavity boosted the number of states into which a photon can be emitted, which greatly increased the decay rate for the electron spins in a controllable way. The technique is much like buying more lottery tickets to increase your chances of winning, Morton said.

The large bismuth atoms embedded in the silicon sample provided the electrons with unique spin properties that enabled the experiment. Schenkel said that implanting the bismuth atoms into the delicate silicon framework, a process known as "doping," was "like squeezing bowling balls into a lattice of ping-pong balls."

"We did a new trick with silicon. People wouldn't expect you could squeeze anything new out of silicon," Schenkel said. "Now we're looking into further improving bismuth-doped silicon and into tailoring the spin properties of other materials, and using this experimental technique for these materials."

To enhance the performance of materials used in future experiments, Schenkel said it will be necessary to improve the doping process so it is less damaging to the silicon lattice. Also, the implantation process could be designed to produce regularly spaced arrays of individual electron spins that would be more useful for quantum computing than a concentrated ensemble of electron spins.

"We are now doing experiments on processing this and other materials at higher temperature and pressure with nanosecond ion pulses at NDCX-II, one of the accelerators here at Berkeley Lab," Schenkel said. "There are indications that it will improve the overall spin quality."

Researchers said the latest research could potentially prove useful in boosting the sensitivity of scientific techniques like nuclear magnetic resonance spectroscopy and dynamic nuclear polarization, useful for a range of experiments, and could also shorten experimental times by manipulating spin properties.

"You need a way to reset spins--the ability to cause them to relax on demand to improve the rate at which you can repeat an experiment," Morton said.

Bertet said it may be possible to further accelerate the electron-flipping behavior to below 1 millisecond, compared to the 1-second rate in the latest results.

"This will then open the way to many new applications," he said.

###

Researchers from the Institute of Electronics, Microelectronics and Nanotechnology in France, the Quantum Nanoelectronics Laboratory in Israel also participated in this research, which was supported by the U.S. Department of Energy Office of Science, European Research Council and The Royal Society.

For more information about Thomas Schenkel's research, go here (http://atap.lbl.gov/programs-2/ion-beam-technology/).

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at http://science.energy.gov.

Media Contact

Glenn Roberts Jr.
geroberts@lbl.gov
510-486-5582

 @BerkeleyLab

http://www.lbl.gov 

Glenn Roberts Jr. | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>