Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new level of magnetic saturation

25.07.2017

Scientists from Göttingen University detect strongest magnetic fields ever in low mass stars

An international group of astronomers lead by scientists from the University of Göttingen has detected unexpectedly strong magnetic fields on the surface of a few fast rotating M dwarf stars. For a long time it was thought that the dynamo in these stars saturates with a maximum magnetic field strength of about four kilogauss (kG) if a star rotates faster than a particular rotation rate.


Red m-dwarf.

Photo: University of Göttingen

Using accurate observations and up-to-date models, the researchers discovered that some fully convective M dwarfs generate even stronger fields of up to about seven kG. Stars with strongest fields also have simplest dipole dominant magnetic field geometry, while stars with more complex geometries cannot generate average fields stronger than about four kG.

The study provides the first observational evidence that the dynamo in fully convective M dwarfs generates magnetic fields that can differ not only in the geometry of their large scale component but also in the total magnetic energy. The results were published in Nature Astronomy.

M dwarfs are the most numerous stars in our Galaxy with masses between approximately 0.5 and 0.1 solar masses. Many of them show surface activity qualitatively similar to our Sun and generate flares, high X-ray fluxes, and large-scale magnetic fields. All these phenomena are driven by a dynamo powered by stellar rotation and convective motions inside the stars. Most stars with convective envelopes follow a so-called rotation-activity relationship, where various activity indicators (for example X-ray flux) saturate in stars with rotation periods shorter than a few days.

The activity gradually declines with the rotation rate in stars rotating more slowly. It is thought that due to a tight empirical correlation between X-ray and magnetic flux, the stellar magnetic fields will also saturate to values of around four kG. “Magnetic fields stronger than this have not been detected in any low mass star, which was seen as an evidence for the magnetic field saturation,” says Dr. Denis Shulyak from Göttingen University’s Institute for Astrophysics.

Using extensive data sets of accurate observations and improved analysis methods researchers detected the strongest magnetic field of about seven kG in the M dwarf star WX UMa, and fields between five kG and six kG in three more stars. All these fields are well beyond the currently presumed saturated value of four kG.

“WX UMa is ten times smaller than the Sun, but it generates an average magnetic field which is a factor of hundred stronger,” says Prof. Dr. Ansgar Reiners from Göttingen University’s Institute for Astrophysics. “This is because WX UMa rotates about thirty times faster than the Sun and its fully convective envelope provides a large amount of kinetic energy. Both these factors are essential for the efficient dynamo action. Fast rotating M dwarfs are therefore very active and very magnetic stars, and we now know that some of them can generate magnetic fields much stronger than we thought before.”

The researchers also found a connection between the strength and the geometry of surface magnetic fields. Stars with strongest magnetic fields are those having simple dipole dominant magnetic fields, while stars with more complex multipole dominant magnetic geometries do not generate fields stronger than four kG. “This is itself a very interesting result because it tells us that the dynamo in fully convective M dwarfs generates magnetic fields that can differ not only in the geometry of their large scale component, which was already known from previous studies, but also in the total magnetic energy,” says Shulyak.

“In addition, we are starting to observe that dynamo processes behave differently with rotation rate in these stars. Stars with multipole fields saturate below periods of about four days with the saturated magnetic field strength of about four kG, while some stars with dipole dominant geometries exhibit surface fields unambiguously stronger and demonstrate no obvious saturation effect. Yet this requires additional observations and we hope to address this question in future studies. Nevertheless, our findings provide important constraints and challenges for the existing dynamo models.”

Original publication: Denis Shulyak et al. Strong dipole magnetic fields in fast rotating fully convective stars. Nature Astronomy 2017. DOI: 10.1038/s41550-017-0184.

Contact:
Dr. Denis Shulyak
University of Göttingen – Institute for Astrophysics
Phone +49 551 39-5055
Email: denis@astro.physik.uni-goettingen.de

Prof. Dr. Ansgar Reiners
University of Göttingen – Institute for Astrophysics
Phone +49 551 39-13825
Email: ansgar.reiners@phys.uni-goettingen.de

Weitere Informationen:

http://www.uni-goettingen.de/en/3240.html?cid=5882 photos
http://www.astro.physik.uni-goettingen.de/~areiners/AR/AR.htm research group

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>