Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Gateway to the Microcosmos

05.05.2015

Physicists at the Laboratory for Attosecond Physics have developed a new laser-light source that will lead to significant advances in research on fundamental physics.

With the aid of extremely short and highly intense pulses of laser light, scientists have made great strides in their efforts to observe and control particle motions outside the confines of atomic nuclei. Indeed, the future of electronics lies in optical control of electron flows.


The LAP team has developed a novel ytterbium:yttrium-aluminium-garnet thin-disk laser that emits light pulses lasting 7.7 femtoseconds and consisting of 2.2 optical oscillations. The pulses have an average power of 6 W and carry 0.15 microjoules of energy, over 1.5 orders of magnitude higher than those generated by commercially available Ti:Sa lasers.

Graphic: Thorsten Naeser

That would enable data processing operations to be performed at frequencies equivalent to the rate of oscillation of visible light – some 100,000 times faster than is feasible with current techniques. To reach this goal, advances in laser technology are essential.

Physicists at the Laboratory for Attosecond Physics (LAP), which is run jointly by LMU Munich and the Max Planck Institute of Quantum Optics (MPQ), has developed a novel light source that brings the age of optoelectronics closer. The team describes the new instrument in the journal “Nature Communications”.

Most of the lasers utilized in research laboratories are based on titanium:sapphire (Ti:Sa) crystals, and this type of instrument has been the dominant tool in the production of ultrashort light pulses for over 20 years. But this situation is likely to change very soon.

All the indications are that thin-disc laser systems will soon displace their older rivals, which employ rod- or slab-like crystals. The team at the LAP has now introduced the Ytterbium:Yttrium-Aluminium-Garnet (Yb:YAG) disk laser. The instrument emits pulses lasting 7.7 femtoseconds (10 to the minus 15 sec, a millionth of a billionth of a second), which corresponds to 2.2 wave periods.

The average pulse power is 6 Watts and each pulse carries 0.15 microjoules of energy, 1.5 orders of magnitude greater than that attainable with commercial titanium:sapphire lasers.

Physicists are already able to control the waveform of the emitted pulses with considerable precision, but the new system extends this capacity even further. Exquisite control of the temporal shape of the electromagnetic fields of the light waves is indispensable for their use in the switching of electron flows in condensed matter and in single atoms, and hence for optoelectronics.

Secondly, pulse length must be limited to a few femtoseconds. Previous experiments carried out by the team at the LAP had shown that it is indeed possible to switch electric currents on and off using specially shaped electromagnetic wave packets, i.e. phase-controlled laser pulses (Schiffrin, Nature 2012; Paasch-Colberg, Nature Photonics 2014, Krausz & Stockman, Nature Photonics 2014). However, the maximum switching rates achieved in these experiments were on the order of a few thousands per sec.

This limit has now been spectacularly breached. The new laser is capable of producing tens of millions of high-power pulses per second, and it ushers in a new era in the investigation of ultrafast physical processes. This field focuses on phenomena such as electron motions in molecules and atoms, which can take place on attosecond timescales (an attosecond lasts for a billionth of a billionth of a second, 10 to the minus 18 sec). The ability to generate attosecond laser pulses effectively permits electron motions to be “photographed”.

With the advent of the new laser, atomic photography moves into a new phase. Characterization of rare events in the microcosmos with the Ti:Sa systems now used in attosecond laboratories requires observation times of hours or even days, assuming they can be captured at all. The new instrument improves data acquisition rates by a factor of between 1000 and 100,000, making it possible to study such phenomena in far less time and in much greater detail.

The new generation of lasers could also be utilized to explore the elementary processes that underlie natural phenomena. The new tool will soon be able to generate pulses of high-energy light, with a wavelength of 60 nanometers, in the extreme ultraviolet segment of the spectrum.

Such pulses are sufficiently energetic to excite helium ions, which would allow the frequency of the associated emission to be precisely determined with the frequency-comb technique, for which Prof. Theodor Hänsch won a Nobel Prize in Physics in 2005. This type of laser spectroscopy provides a means of determining the values of constants of nature with extremely high precision.

The thin-disk laser could soon become a standard item of equipment for basic research in attosecond physics and laser spectroscopy. The LAP team has opened a new window on the microcosmos. Thorsten Naeser


Original publication:
O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, Th. Udem, and F. Krausz.
High-power multi-megahertz source of waveform-stabilised few-cycle light
Nature Communications, 5 May 2015; doi: 10.1038/ncomms7988.

For further information, contact:

Dr. Oleg Pronin
Ludwig-Maximilians-Universität Munich
Phone: +49 (0)89 289 - 14187
E-mail: oleg.pronin@physik.uni-muenchen.de

Prof. Ferenc Krausz
Chair of Experimental Physics,
Ludwig-Maximilians-Universität Munich
Laboratory for Attosecond Physics
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49 (0)89 32 905 - 600 / Fax: - 649
E-mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Weitere Informationen:

http://www.attoworld.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>