Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new concept for a unidirectional waveguide

07.11.2017

A team of scientist at MPQ and Caltech proposes the realization of two-dimensional topological insulators by classical optical networks.

In the past decade, a new type of material has attracted raising attraction: the so-called topological insulator. This class of materials exhibits a very peculiar property: they behave like insulators in the interior, but contain conducting states at their boundaries.


Scheme of the optical nework

Graphic: from the original publication

As these states are “topologically” protected (see below), the states are very robust against imperfections, and electric currents can flow almost without any dissipation. This makes these materials extremely interesting for the task of quantum communication and quantum computing, for example.

Now Dr. Tao Shi (at present Chinese Academy of Sciences, Beijing) and Prof. Ignacio Cirac from the Max Planck Institute of Quantum Optics in Garching, together with Prof. Jeff Kimble from the California Institute of Technology (Pasadena, USA), have developed a detailed scheme for an experimental setup to realize a 2-dimensional topological insulator with classical optical networks (Proceedings of the National Academy of Sciences of the United States of America, AOP 10 October 2017).

“In this network, photon modes play the role of the electronic states in a solid state layer,” explains Dr. Tao Shi. “By preparing chiral photon modes at the boundary, we may be able to build a one-way electromagnetic waveguide, in which light can only propagate in one direction, while the opposite direction is prohibited.“

Solid state crystals are characterized by their band structure. In case of an insulator, the so-called valence band, in which all electronic states are occupied, is separated from the conduction band by a large forbidden zone. This, however, only holds for infinite samples. In case of a confined crystal or layer, the electronic states at the surface or edge, respectively, differ from those in the interior, and sometimes they emerge in the middle of the forbidden zone.

As the shape of the band structure is mathematically described by a certain topological number, these systems are called in short “topological insulators”. The chirality of the edge states is locked to the spin of the electron, and is consequently protected by time-reversal symmetry: a reverse in direction would imply a flip of the spin direction. For a certain class of materials with a “nontrivial” topological number this is not allowed.

Therefore, the states are protected and robust against imperfections or deformations, as long as the perturbations are small. In a certain class of electronic 2-dimensional topological insulators also the so-called quantum spin Hall (QSH) effect can be observed. Intuitively, this effect describes the phenomenon that electrons with different spins are subjected to oppositely directed magnetic fields.

Different from previous schemes, the scientists propose a setup made of optical passive elements such as fibres, beam splitters, and wave plates, whereby system losses are reduced to a large extent. By constructing the nodes of the network with a “bad” cavity, i.e. a cavity with high damping, they are able to dramatically enhance the topological bandgap to the scale of the free spectral range. As a consequence, the edge modes survive in the larger frequency domain with much longer lifetime. Furthermore, the interplay between the topology and the Kerr non-linearity induces the generation of squeezed edge modes.

“The optical analogue of a topological insulator paves the way towards building the one-way wave guide,” Dr. Shi points out. “Apart from that – our ultimate goal is to realize the fractional quantum Hall effect (FQHE) in this photonic system. To this end, we have to induce strong photon-photon interactions by means of atoms. We would also like to see some exotic topological phases in the photonic system, which can be very different from those observed in conventional condensed matter systems.“ Olivia Meyer-Streng

Original publication:

Tao Shi, H. Jeff Kimble, and J. Ignacio Cirac
Topological phenomena in classical optical networks
PNAS 2017; published ahead of print October 10, 2017, doi:10.1073/pnas.1708944114

Contact:

Dr. Tao Shi
Associate Professor
Institute of Theoretical Physics
Chinese Academy of Sciences
Zhong Guan Cun East Street 55
P. O. Box 2735, Beijing 100190
P. R. China
Phone: +86 010 / 62 582 - 513
Fax: +86 010 / 62 582 - 587
E-mail: tshi@itp.ac.cn

Prof. Dr. J. Ignacio Cirac
Honorary Professor TU Munich and
Director at the Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 705
E-mail: ignacio.cirac@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Need entangled atoms? Get 'Em FAST! with NIST's new patent-pending method
08.11.2017 | National Institute of Standards and Technology (NIST)

nachricht Theoretical physicists are modeling complex quantum processes with cold atoms and ions
08.11.2017 | RUDN University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

Im Focus: Researchers develop chip-scale optical abacus

A team of researchers led by Prof. Wolfram Pernice from the Institute of Physics at Münster University has developed a miniature abacus on a microchip which calculates using light signals. With it they are paving the way to the development of new types of computer in which, as in the human brain, the computing and storage functions are combined in one element.

Researchers at the universities of Münster, Exeter and Oxford have developed a miniature “abacus” which can be used for calculating with light signals. With it...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Need entangled atoms? Get 'Em FAST! with NIST's new patent-pending method

08.11.2017 | Physics and Astronomy

New approach uses light instead of robots to assemble electronic components

08.11.2017 | Information Technology

Tracking down the origins of gold

08.11.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>