Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A laser that smells like a hound

07.06.2018

University of Adelaide researchers have created a laser that can "smell" different gases within a sample.

Applications for the new device lie not just in environmental monitoring and detecting industrial contamination, but may eventually be used to diagnose disease by "smelling" the breath.


This is a graphic describing a laser comb measuring the light absorption patterns of carbon dioxide molecules.

Credit: Sarah Scholten

Usage Restrictions: For use with this story only

The researchers liken the ability of the laser to differentiate between different gas compounds in a sample to the sensitive nose of a bloodhound. But rather than smell, the device uses patterns of light absorption to measure the composition of the sample.

From the University's Institute for Photonics and Advanced Sensing (IPAS), the researchers report in the journal Physical Review Applied that the laser can measure the amount of carbon dioxide in a gas sample in under one second, with high accuracy and precision.

"The ability to rapidly measure gas composition to such high accuracy is cutting edge," says lead author Sarah Scholten, PhD candidate in the University's School of Physical Sciences. "With further development, it opens the way for real-time and inexpensive monitoring and analysis that can be carried out in the field, or in the doctor's surgery, by non-specialist operators."

The device exploits a Nobel-prize winning technology, developed by US and German scientists, called an 'optical frequency comb'. This 'laser comb' generates millions of different light frequencies or colours at once.

The researchers pass this special light through a sample of gas where each gas molecule absorbs a distinctive set of colours. The pattern of light absorption is a unique fingerprint of the gas composition of the sample.

"This first work aims at atmospheric monitoring, however, the technique is broadly applicable and offers an avenue for near-universal concentration measurements," says Dr Chris Perrella, Postdoctoral Fellow.

The group now aims to use the laser comb to unravel the chemical composition of the exhaled breath - in this much more complex situation they hope to find tell-tale chemical signs that point to underlying disease. The ultimate goal is to use the laser as a screening tool - to discover a serious illness even before the patient is aware of the condition.

###

The research was led by IPAS Director Professor Andre Luiten and was funded by the Australian Research Council, Medical and Scientific Services Pty Ltd, the South Australian Premier's Research and Industry Fund and a South Australian Government Catalyst Research Grant.

Media Contact:

Sarah Scholten, PhD candidate, School of Physical Sciences, The University of Adelaide. Mobile: +61 (0)401 857 960, sarah.scholten@adelaide.edu.au

Professor Andre Luiten, IPAS Director, The University of Adelaide, Phone: +61 (0)8 8313 2359, Mobile: +61(0) 404 817 168, andre.luiten@adelaide.edu.au

Dr Chris Perrella, Postdoctoral Fellow, Institute for Photonics and Advanced Sensing, The University of Adelaide. Phone: +61 ())8 8313 2323, Mobile: +61 (0)424 544 035, chris.perrella@adelaide.edu.au

Robyn Mills, Media Officer, University of Adelaide. Phone: +61 (0)8 8313 6341, Mobile: +61 (0)410 689 084, robyn.mills@adelaide.edu.au

Sarah Scholten | EurekAlert!
Further information:
http://dx.doi.org/10.1103/PhysRevApplied.9.054043

Further reports about: IPAS Photonics Physical Sciences light absorption

More articles from Physics and Astronomy:

nachricht New data-mining technique offers most-vivid picture of Martian mineralogy
07.06.2018 | Carnegie Institution for Science

nachricht Sharp images with flexible fibers
07.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

 
Latest News

A laser that smells like a hound

07.06.2018 | Physics and Astronomy

Transparent, conductive films promising for developing flexible screens

07.06.2018 | Materials Sciences

FEFU scientists have created a new type of optical ceramic material

07.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>