Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A comet spews dust

27.10.2014

OSIRIS images of Rosetta’s comet show spectacular streams of dust emitted into space

Rosetta’s comet 67P/Churyumov-Gerasimenko is beginning to show a clearly visible increase in activity. While in the past months most of the dust emitted from the body’s surface seemed to originate from the neck region which connects the two lobes, new images obtained by Rosetta’s scientific imaging system OSIRIS now show jets of dust along almost the whole body of the comet.


A comet wakes up: Two views of the same region on the neck of comet 67P/Churyumov-Gerasimenko. The right image was taken with an exposure time of less than a second and shows details on the comet’s surface. The left image was overexposed (exposure time of 18.45 seconds) so that surface structures are obscured. At the same time, however, jets arising from the comet’s surface become visible. The images were obtained by the wide-angle camera of OSIRIS, Rosetta’s scientific imaging system, on 20 October, 2014 from a distance of 7.2 kilometers from the surface.

© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA


Active nucleus: In this image taken by OSIRIS, Rosetta’s onboard scientific imaging system, jets of cometary activity can be seen along almost the whole body of the comet.

© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/NTA/UPM/DASP/IDA

“At this point, we believe that a large fraction of the illuminated comet’s surface is displaying some level of activity”, says OSIRIS scientist Jean-Baptiste Vincent from the Max Planck Institute for Solar System Research (MPS) in Germany. During the past few weeks, the OSIRIS team has witnessed a gradual but qualitative change. “In the first images from this summer that showed distinct jets of dust leaving the comet, these jets were limited to the neck region”, says OSIRIS Principal Investigator Holger Sierks from the MPS. Now, jets appear also on the “body” and “head” of the comet.

Currently, still more than 450 million kilometers are separating 67P from the Sun. Based on a rich history of ground-based observations scientists expect a comet’s activity to pick-up noticeably once it comes within 300 million kilometers of the Sun. “Being able to monitor these emissions from up close for the first time gives us much more detailed insights”, says Sierks. From the OSIRIS images, the team now wants to derive a better understanding of the evolution of cometary activity and the physical processes driving it.

Since under normal circumstances, the comet’s nucleus would outshine the jets, the necessary images must be drastically overexposed. “In addition, one image alone cannot tell us the whole story”, says Sierks. “From one image we cannot discern exactly where on the surface a jet arises.” Instead, the researchers compare images of the same region taken from different angles in order to reconstruct the three-dimensional structure of the jets.

While 67P’s overall activity is clearly increasing, the mission’s designated landing site on the “head” of the comet still seems to be rather quiet. However, there is some indication that new active areas are waking up about one kilometer from landing area J. These will allow the lander’s instruments to study the comet’s activity from an even closer distance.

Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI. Rosetta will be the first mission in history to rendezvous with a comet, escort it as it orbits the Sun, and deploy a lander to its surface.

The scientific imaging system OSIRIS was built by a consortium led by the Max Planck Institute for Solar System Research (Germany) in collaboration with CISAS, University of Padova (Italy), the Laboratoire d'Astrophysique de Marseille (France), the Instituto de Astrofísica de Andalucia, CSIC (Spain), the Scientific Support Office of the European Space Agency (The Netherlands), the Instituto Nacional de Técnica Aeroespacial (Spain), the Universidad Politéchnica de Madrid (Spain), the Department of Physics and Astronomy of Uppsala University (Sweden), and the Institute of Computer and Network Engineering of the TU Braunschweig (Germany). OSIRIS was financially supported by the national funding agencies of Germany (DLR), France (CNES), Italy (ASI), Spain (MEC), and Sweden (SNSB) and the ESA Technical Directorate.

Contact 

Dr. Birgit Krummheuer

Press and Public Relations
Max Planck Institute for Solar System Research, Göttingen
Phone:+49 551 384979-462
 

Dr. Holger Sierks

Max Planck Institute for Solar System Research, Göttingen
Phone:+49 551 384979-242

Dr. Birgit Krummheuer | Max-Planck-Institute

Further reports about: ESA MPS Max Planck Institute OSIRIS Phone Planck Solar System Research Sun landing

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>