Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A comet spews dust

27.10.2014

OSIRIS images of Rosetta’s comet show spectacular streams of dust emitted into space

Rosetta’s comet 67P/Churyumov-Gerasimenko is beginning to show a clearly visible increase in activity. While in the past months most of the dust emitted from the body’s surface seemed to originate from the neck region which connects the two lobes, new images obtained by Rosetta’s scientific imaging system OSIRIS now show jets of dust along almost the whole body of the comet.


A comet wakes up: Two views of the same region on the neck of comet 67P/Churyumov-Gerasimenko. The right image was taken with an exposure time of less than a second and shows details on the comet’s surface. The left image was overexposed (exposure time of 18.45 seconds) so that surface structures are obscured. At the same time, however, jets arising from the comet’s surface become visible. The images were obtained by the wide-angle camera of OSIRIS, Rosetta’s scientific imaging system, on 20 October, 2014 from a distance of 7.2 kilometers from the surface.

© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA


Active nucleus: In this image taken by OSIRIS, Rosetta’s onboard scientific imaging system, jets of cometary activity can be seen along almost the whole body of the comet.

© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/NTA/UPM/DASP/IDA

“At this point, we believe that a large fraction of the illuminated comet’s surface is displaying some level of activity”, says OSIRIS scientist Jean-Baptiste Vincent from the Max Planck Institute for Solar System Research (MPS) in Germany. During the past few weeks, the OSIRIS team has witnessed a gradual but qualitative change. “In the first images from this summer that showed distinct jets of dust leaving the comet, these jets were limited to the neck region”, says OSIRIS Principal Investigator Holger Sierks from the MPS. Now, jets appear also on the “body” and “head” of the comet.

Currently, still more than 450 million kilometers are separating 67P from the Sun. Based on a rich history of ground-based observations scientists expect a comet’s activity to pick-up noticeably once it comes within 300 million kilometers of the Sun. “Being able to monitor these emissions from up close for the first time gives us much more detailed insights”, says Sierks. From the OSIRIS images, the team now wants to derive a better understanding of the evolution of cometary activity and the physical processes driving it.

Since under normal circumstances, the comet’s nucleus would outshine the jets, the necessary images must be drastically overexposed. “In addition, one image alone cannot tell us the whole story”, says Sierks. “From one image we cannot discern exactly where on the surface a jet arises.” Instead, the researchers compare images of the same region taken from different angles in order to reconstruct the three-dimensional structure of the jets.

While 67P’s overall activity is clearly increasing, the mission’s designated landing site on the “head” of the comet still seems to be rather quiet. However, there is some indication that new active areas are waking up about one kilometer from landing area J. These will allow the lander’s instruments to study the comet’s activity from an even closer distance.

Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI. Rosetta will be the first mission in history to rendezvous with a comet, escort it as it orbits the Sun, and deploy a lander to its surface.

The scientific imaging system OSIRIS was built by a consortium led by the Max Planck Institute for Solar System Research (Germany) in collaboration with CISAS, University of Padova (Italy), the Laboratoire d'Astrophysique de Marseille (France), the Instituto de Astrofísica de Andalucia, CSIC (Spain), the Scientific Support Office of the European Space Agency (The Netherlands), the Instituto Nacional de Técnica Aeroespacial (Spain), the Universidad Politéchnica de Madrid (Spain), the Department of Physics and Astronomy of Uppsala University (Sweden), and the Institute of Computer and Network Engineering of the TU Braunschweig (Germany). OSIRIS was financially supported by the national funding agencies of Germany (DLR), France (CNES), Italy (ASI), Spain (MEC), and Sweden (SNSB) and the ESA Technical Directorate.

Contact 

Dr. Birgit Krummheuer

Press and Public Relations
Max Planck Institute for Solar System Research, Göttingen
Phone:+49 551 384979-462
 

Dr. Holger Sierks

Max Planck Institute for Solar System Research, Göttingen
Phone:+49 551 384979-242

Dr. Birgit Krummheuer | Max-Planck-Institute

Further reports about: ESA MPS Max Planck Institute OSIRIS Phone Planck Solar System Research Sun landing

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>