Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D imaging reveals hidden forces behind clogs, jams, avalanches, earthquakes

05.03.2015

Pick up a handful of sand, and it flows through your fingers like a liquid. But when you walk on the beach, the sand supports your weight like a solid. What happens to the forces between the jumbled sand grains when you step on them to keep you from sinking?

An international team of researchers collaborating at Duke University have developed a new way to measure the forces inside materials such as sand, soil or snow under pressure.


Physicists are using this computerized 3-D rendering of beads in a box to serve as a model for soil, sand or snow. Colored lines show the network of forces as the virtual particles are pushed together. Thick red lines connect the particles that are experiencing the brunt of the force. By studying the forces inside granular materials as they're pressed, pushed or squeezed, the researchers hope to better understand phenomena like the jamming of grain hoppers or the early warning signs of earthquakes and avalanches.

Credit: Video courtesy of Nicolas Brodu.

Described in the March 5 issue of Nature Communications, the technique uses lasers coupled with force sensors, digital cameras and advanced computer algorithms to peer inside and measure the forces between neighboring particles in 3-D.

The new approach will allow researchers to better understand phenomena like the jamming of grain hoppers or the early warning signs of earthquakes and avalanches, said study co-author Nicolas Brodu, now at the French institute Inria.

Whether footprints in sand, or the force of gravity on a mountain slope, physicists have long sought to understand what happens inside granular materials as they're pressed, pushed or squeezed.

For centuries this simple question has been surprisingly difficult to answer. But more recently, thanks to advances in 3-D imaging techniques and the number-crunching power of computers, researchers are starting to get a better picture of what happens when granular materials like soil or snow are pushed together.

Brodu, along with physicists Robert Behringer of Duke University and Joshua Dijksman of Wageningen University in the Netherlands, describe how they use simple tools to measure the network of forces at it spreads from one particle to the next.

The researchers use a solution of hundreds of translucent hydrogel beads in a Plexiglass box to simulate materials like soil, sand or snow.

A piston repeatedly pushes down on the beads in the box while a sheet of laser light scans the box, and a camera takes a series of cross-sectional images of the illuminated sections.

Like MRI scans used in medicine, the technique works by converting these cross-sectional "slices" into a 3-D image.

Custom-built imaging software stacks the hundreds of thousands of 2-D images together to reconstruct the surface of each individual particle in three dimensions, over time. By measuring the tiny deformations in the particles as they are squeezed together, the researchers are able to calculate the forces between them.

The new approach will help researchers better understand a range of natural and manmade hazards, such as why farmworkers stepping into grain bins sometimes experience a quicksand effect and are suddenly sucked under.

"This gives us hope of understanding what happens in disasters like a landslide, when packed soil and rocks on a mountain become loose and slide down," Brodu said. "First it acts like a solid, and then for reasons physicists don't completely understand, all of a sudden it destabilizes and starts to flow like a liquid. This transition from solid to liquid can only be understood if you know what's going on inside the soil."

The team has already used results from their technique to create a new model for the way particulate matter behaves, which is concurrently published in the journal Physical Review E.

###

This research was supported by grants from the National Science Foundation (DMR1206351, DMS1248071), the National Aeronautics and Space Administration (NNX10AU01G), and the U.S. Army Research Office (W911NF-1-11-0110).

CITATION: "Spanning the Scales of Granular Materials through Microscopic Force Imaging," Brodu, N., J. A. Dijksman and R. P. Behringer. Nature Communications, March 2015. DOI: 10.1038/ncomms7361

Media Contact

Robin Ann Smith
ras10@duke.edu
919-681-8057

 @DukeU

http://www.duke.edu 

Robin Ann Smith | EurekAlert!

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>