Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D imaging reveals hidden forces behind clogs, jams, avalanches, earthquakes

05.03.2015

Pick up a handful of sand, and it flows through your fingers like a liquid. But when you walk on the beach, the sand supports your weight like a solid. What happens to the forces between the jumbled sand grains when you step on them to keep you from sinking?

An international team of researchers collaborating at Duke University have developed a new way to measure the forces inside materials such as sand, soil or snow under pressure.


Physicists are using this computerized 3-D rendering of beads in a box to serve as a model for soil, sand or snow. Colored lines show the network of forces as the virtual particles are pushed together. Thick red lines connect the particles that are experiencing the brunt of the force. By studying the forces inside granular materials as they're pressed, pushed or squeezed, the researchers hope to better understand phenomena like the jamming of grain hoppers or the early warning signs of earthquakes and avalanches.

Credit: Video courtesy of Nicolas Brodu.

Described in the March 5 issue of Nature Communications, the technique uses lasers coupled with force sensors, digital cameras and advanced computer algorithms to peer inside and measure the forces between neighboring particles in 3-D.

The new approach will allow researchers to better understand phenomena like the jamming of grain hoppers or the early warning signs of earthquakes and avalanches, said study co-author Nicolas Brodu, now at the French institute Inria.

Whether footprints in sand, or the force of gravity on a mountain slope, physicists have long sought to understand what happens inside granular materials as they're pressed, pushed or squeezed.

For centuries this simple question has been surprisingly difficult to answer. But more recently, thanks to advances in 3-D imaging techniques and the number-crunching power of computers, researchers are starting to get a better picture of what happens when granular materials like soil or snow are pushed together.

Brodu, along with physicists Robert Behringer of Duke University and Joshua Dijksman of Wageningen University in the Netherlands, describe how they use simple tools to measure the network of forces at it spreads from one particle to the next.

The researchers use a solution of hundreds of translucent hydrogel beads in a Plexiglass box to simulate materials like soil, sand or snow.

A piston repeatedly pushes down on the beads in the box while a sheet of laser light scans the box, and a camera takes a series of cross-sectional images of the illuminated sections.

Like MRI scans used in medicine, the technique works by converting these cross-sectional "slices" into a 3-D image.

Custom-built imaging software stacks the hundreds of thousands of 2-D images together to reconstruct the surface of each individual particle in three dimensions, over time. By measuring the tiny deformations in the particles as they are squeezed together, the researchers are able to calculate the forces between them.

The new approach will help researchers better understand a range of natural and manmade hazards, such as why farmworkers stepping into grain bins sometimes experience a quicksand effect and are suddenly sucked under.

"This gives us hope of understanding what happens in disasters like a landslide, when packed soil and rocks on a mountain become loose and slide down," Brodu said. "First it acts like a solid, and then for reasons physicists don't completely understand, all of a sudden it destabilizes and starts to flow like a liquid. This transition from solid to liquid can only be understood if you know what's going on inside the soil."

The team has already used results from their technique to create a new model for the way particulate matter behaves, which is concurrently published in the journal Physical Review E.

###

This research was supported by grants from the National Science Foundation (DMR1206351, DMS1248071), the National Aeronautics and Space Administration (NNX10AU01G), and the U.S. Army Research Office (W911NF-1-11-0110).

CITATION: "Spanning the Scales of Granular Materials through Microscopic Force Imaging," Brodu, N., J. A. Dijksman and R. P. Behringer. Nature Communications, March 2015. DOI: 10.1038/ncomms7361

Media Contact

Robin Ann Smith
ras10@duke.edu
919-681-8057

 @DukeU

http://www.duke.edu 

Robin Ann Smith | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>