Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2+1 is Not Always 3 - In the microworld unity is not always strength

02.05.2016

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two particles, things are relatively simple. When other particles are added, however, the situation becomes more complicated than common sense would suggest.


Colloids confined by laser beams

Soft Matter Lab @ Bilkent University

Imagine there are two people pushing a broken-down car: the total force is the sum of their forces. Similarly, if there are three people, it would be the sum of the force of three people, and so on. Now imagine a solid particle of a few thousandths of a millimeter, a colloid, immersed in fluid. Just ahead there is a similar particle.

If there are “critical” thermal fluctuations in the fluid that separates them, they will either repel or attract each other without even touching: the fluctuations are responsible for it. In other words, an interaction force, or "critical Casimir" force emerges, as if the particles were connected by an invisible spring. To obtain critical fluctuations, we only need one of many transparent liquids composed of a mixture of two fluids which gradually separate like oil and water when their temperature is raised.

What happens when a third colloid comes in? “Something counterintuitive,” explains SISSA professor, Andrea Gambassi, one of the authors of the study and long-standing collaborator of Prof. Siegfried Dietrich, Director at the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart, “the total force that one of the particles ‘perceives’ is different from the sum of the interactions with the other two when they are present separately.”

For Dietrich and Gambassi critical Casimir forces are nothing new: in 2008, they published together a study in Nature, where these forces, which had been predicted theoretically since 1978, were directly measured for the first time in collaboration with the experimental group of Prof. Clemens Bechinger, Head of the 2nd Institute of Physics at the University of Stuttgart and Max Planck fellow at the MPI-IS. “In simple words” Gambassi continues, “the forces do not add up linearly like they do in our daily life. Here we are dealing with what physicists call a many-body effect, which is typical of fluctuation-induced forces.”

The new study measured this effect for the first time in a system made up of glass (silica) microspheres immersed in fluid. By reconstructing critical Casimir forces with only two particles and then with three, the researchers demonstrated the nonadditivity of these forces.

“The knowledge of these effects is very important from the point of view of both fundamental and applied research, especially for scientists who design micro-machines to perform a variety of tasks. Each micro-machine is made up of several mechanical components in relative motion and in order to understand how the different ‘gears’ interact with each other, the knowledge of many-body interaction is crucial, especially in the presence of fluids,” explains Gambassi.

Laser beams, optical tweezers, and critical mixtures

The experiment, conducted by the group led by Professor Giovanni Volpe at the University of Bilkent in Turkey, starts with colloids immersed in a mixture of water and lutidine (an oily substance). Below 34°C, this mixture is similar to water, but when the temperature is raised, a transition occurs: first the fluid becomes opaque because of the effects of critical fluctuations, after which the oil begins to separate, floating on the water. “It is around this phase transition that we observe the many-body effects,” ex-plains Volpe.

The colloids immersed in fluid, however, move randomly and diffuse with Brownian motion, the typical movement of microscopic objects immersed in a liquid, as explained theoretically by Einstein. In order to “confine” them, the fluid was illuminated by thin laser beams focussed on one point: when the particles entered the beam, they tended to stay where the light was most intense. In this way, the laser acted as a sort of optical tweezers. By keeping two colloids close together using two laser beams, it was possible to accurately measure their random motions with a video taken from the microscope. Then, using statistical methods, the forces at play were reconstructed. With the help of another optical tweezers, the researchers then added a third particle.

“On approaching the phase transition, when comparing the experiment with two and three colloids, we observed that there was no linear addition of the forces and that many-body effects were present,” explains Dietrich. “Of course, if we added more colloids, the situation would become even more complicated and interesting.” And Volpe concludes: “In this way we demonstrated that the many-body effect is real and we succeeded in measuring it with unexpected accuracy, especially when we consider that we are dealing with forces of one-thousandth of a millionth of a gram. Now we would like to use them to design and develop new micro-machines.”

Weitere Informationen:

http://www.nature.com/ncomms/2016/160421/ncomms11403/abs/ncomms11403.html
http://www.is.mpg.de/dietrich

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>