Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wound dressings made from bacterial alginate

03.08.2016

In a joint project called "AlBioTex", researchers at the Hohenstein Institute, B.R.A.I.N AG and Kelheim Fibres GmbH established a biotechnological process to produce bacterial alginate.

The research partners have succeeded in mapping out for the first time a complete production and treatment process, from using biotechnology to produce bacterial alginate, right through to producing fibres and manufacturing textile materials. The results that were achieved from this successful research project will form the basis for incorporating bacterial alginate in industrial production.


Wound dressing (nonwoven/fleece) made from alginate fibres derived from bacteria. Bacterial alginate nonwoven materials absorb up to 70% more liquid than marine alginate nonwovens.

© Hohenstein Institute


Alginate-viscose fibres produced using bacterial alginate.

© Hohenstein Institute

In a joint project called "AlBioTex", researchers at the Hohenstein Institute, B.R.A.I.N AG ("BRAIN AG"; ISIN DE0005203947 / WKN 520394) and Kelheim Fibres GmbH have successfully developed wound dressings made from bacterial alginate.

The aim of the project (sponsorship ID 031A126, in the Federal Ministry of Education and Research (BMBF) BioIndustrie 2021 programme) was to develop a biotechnological process to produce alginate and then process it into fibre-based products for use in wound dressings. The soil bacterium Azotobacter vinelandii was used as a natural alginate resource. This means that the conventional, time-consuming process of obtaining the biopolymer from brown algae can be avoided and replaced by a sustainable biotechnological process.

The organisations involved in the research partnership were the Hohenstein Institut für Textilinnovation gGmbH in Boennigheim (William-Küster-Institut for Hygiene, Environment and Medicine), the bioeconomy company BRAIN AG in Zwingenberg, the world's leading manufacturer of special viscose fibres Kelheim Fibres GmbH, and the producer of highly specialised materials for medical engineering, rökona Textilwerk GmbH in Tübingen.

Thanks to the interdisciplinary collaboration between the research partners, they have succeeded in mapping out for the first time a complete production and treatment process, from using biotechnology to produce bacterial alginate, right through to producing fibres and manufacturing textile materials.

Alginate is a biopolymer (polysaccharide) that consists of the glycosidically bonded monomers, guluronic and mannuronic acid. The range of industrial applications for the biopolymer is determined by the sequence and ratio of these two sugar components. Alginate is particularly suitable for use in wound dressings because of its excellent biocompatibility, enormous liquid-absorption capacity and good healing properties.

The conventional alginate that is obtained from algae varies greatly in the composition of its sugar components, because of environmental factors. A time-consuming preparation process is required to obtain the ultrapure and biochemically defined alginate that is needed for medical applications, for example. Using biotechnology to produce alginate, on the other hand, offers the option of synthesising biopolymers which have defined properties and are of consistent quality for use in medical products.

Research work that began in 2013 has been able to establish, optimise and standardise the cultivation of the soil bacterium and the biotechnological process for producing and isolating bacterial alginates. By working specifically on optimising the bacterium's alginate biosynthesis, the researchers succeeded in improving the composition, and therefore the properties and yield of the alginate.

This meant that they could make customised alginates that are particularly suitable for producing fibres for use in medical products. In a pilot production facility, the research partners were able to spin fibres from alginate and alginate-viscose, and turn them into innovative nonwoven materials and wound dressings within the established process. When the new wound dressings were tested in use, the alginate product that had been made using biotechnology was impressive for its liquid absorption capacity, which was significantly better than that of commercially available marine alginate-based wound dressings. The bacterial wound dressings absorbed up to 70% more liquid than marine-based dressings.

"The results that were achieved from this successful research project will form the basis for incorporating bacterial alginate in industrial production," declared Dr. Guido Meurer, a member of the Management Board of BRAIN AG. "Now our next goal for the future is to identify other areas of application for bacterial alginate and so open up new sales markets for customised 'special alginates'," added Dr. Daniela Beck from Kelheim Fibres. "Until now it has been impossible, or very difficult, to vary and optimise the material properties of alginate. Thanks to biotechnology, there is now nothing to prevent the targeted use of alginate in specialist textiles," said a delighted Prof. Dirk Höfer of the Hohenstein Institute.

Companies interested in alginate products made using this biotechno-logical process are invited to share in the success of the research partnership. There are a range of possible areas of application for which the technology could be licensed.

Hohenstein Institute
Founded in 1946 as a family business, the Bönnigheim-based Hohenstein Institute is the leading independent research and testing facility in the textile sector, with a total of approximately 650 employees and over 40 offices worldwide. Its core competency is the practical research and development of innovative products and processes on one upon by numerous clients from trade and industry as a reliable basis for decisions regarding product development and marketing.

Through the interdisciplinary cooperation of textile engineers, chemists, physicians, biologists and physicists, the Hohenstein Institute is able to offer their customers a comprehensive, customised and complete service along the entire textile value chain, interweaving sectors depending on individual needs, all from a single source – from consultation to research and testing, through to education and training.

Research and development at the Life Science Department of Hygiene, Environment and Medicine is concerned with textilrelated health issues. The focus is on the interaction of metals and products with people and the environment.

Contact:
Dr. Eva Glink
William-Küster-Institut for
Hygiene, Environment and Medicine
Schlosssteige 1
74357 Boennigheim
Germany
Tel.: +49-(0)-7143-271-786
Fax.: +49-(0)-7143-271-421
Email: e.glink@hohenstein.de
www.hohenstein.com

BRAIN
BRAIN AG is one of Europe's leading technology companies in the field of industrial biotechnology, the core discipline of the bioeconomy. BRAIN identifies previously untapped efficient enzymes, microbial producer organisms and natural substances in complex biological systems that can be put to use by industry. Innovative solutions and products de-rived from "Nature's toolbox" are already being successfully used in the chemical, cosmetics and food industries. BRAIN AG's business model is now based on two key pillars: "BioScience" and "BioIndustrial". The "BioScience" line of business is about collaborations - normally on the basis of exclusive licence agreements - between BRAIN AG and industrial partners. The second line of business, "BioIndustrial", is about developing and marketing BRAIN AG's own products and active product components.

Contact:
Dr. Martin Langer
Unit Head Corporate Development
Darmstädter Str. 34-36
64673 Zwingenberg
Germany
Tel.: +49-(0)-6251-9331-16
Fax.: +49-(0)-6251-9331-11
Email: ml@brain-biotech.de

www.brain-biotech.de

Kelheim Fibres GmbH
Kelheim Fibres is the world's leading manufacturer of specialty viscose fibres. Kelheim combines advanced technology with technical expertise and outstanding customer service. Around 90.000 tons of viscose fibres are produced and tested at the Kelheim plant every year, which are then applied in a variety of product sectors. These highquality fibres are exported to 44 countries across 5 continents. Innovation is the central focus.

Kelheim Fibres promotes development partnerships with its clients and uses the pilot plant in Kelheim to create perfectly tailored fibres. Manufacturers of various end products - from high-tech clothing, to hygiene products, to specialty paper - rely on these fibres and search alongside Kelheim Fibres for future-oriented solutions.

Contact:
Walter Roggenstein
Head R&D
Regensburger Str. 109
93309 Kelheim
Germany
Tel.: +49-(0)-9441-99-489
Fax: +49-(0)-9441-99-1489
Email: walter.roggenstein@kelheim-fibres.com

www.kelheim-fibres.com 


Marianna Diener | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>