Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With Stem Cells to New Intervertebral Discs

09.05.2017

Slipped discs are the most common reason to go to the doctor in Switzerland. Not only people, but also dogs frequently suffer from this problem. An operation cures the painful consequences of a slipped disc, but the disc remains degenerated. Help is on its way: In a study with German shepherds, researchers at the Vetsuisse Faculty of the University of Zurich have shown that stem cells may change this situation.

It is the “shock absorber” between the vertebrae of the spine, cushioning every step, bend and jump: the intervertebral disc. If the fibrocartilage tissue in the spine degenerates over time, an intervertebral disc can “slip” – pinching the medulla or nerves.


Stem cell therapy in dogs

(Picture: Vetsuisse Faculty, UZH)

The consequences include intense pain or even paralysis. Not only people, but also dogs are often susceptible to this disease. Since intervertebral discs themselves cannot regenerate, the affected disc material is removed in an operation that can be performed on both people and animals. The pressure on the nerves and medulla disappears, but the degeneration of the disc remains.

Great hope has thus been placed on stem cell therapy as practiced by Frank Steffen, neurologist at the Clinic for Small Animal Surgery at the Vetsuisse Faculty of the University of Zurich. Stem cells are multipotent cells that can be differentiated into various cell types.

Steffen hopes that the stem cells will possibly form new disc cartilage once injected into a damaged disc. His study on three sick German shepherds demonstrate that a treatment with the body’s own stem cells are well tolerated – an important first step.

Gaining knowledge directly from the afflicted animal

Research on intervertebral disc regeneration is frequently performed using animal testing. At the Clinic for Small Animal Surgery in Zurich, researchers have taken another path: “Since we treat numerous dogs who spontaneously sustain a slipped disc every year, we have been able to gain important knowledge directly from animals that are actually afflicted with this disease,” Frank Steffen explains.

“Due to the similarity in pathology and the course of the illness, conclusions can presumably be drawn for the treatment of affected persons as well.” The project for the development of stem cell therapy in dogs is being conducted in cooperation with Swiss Paraplegic Research (SPR) in Nottwil, Switzerland.

The study on the sick German shepherds was organized as follows: With the permission of the dog owners, neurologist Frank Steffen and his team removed stem cells from the marrow of the pelvic bone of the affected animals. After the cleaning and preparation of the cell material in the laboratory, the stem cells were injected into the degenerated intervertebral disc during a disc operation that had become necessary for the animal in question.

“Our objective is for the stem cells to trigger cellular and molecular repair processes and, ideally, to form new intervertebral disc cells in order to contribute to the regeneration of the tissue,” Steffen says.

After tolerability, check effectiveness

The results are pleasing: The three dogs well tolerated the injections of their own stem cells and the researchers have determined no negative effects. However, later X-rays and magnetic resonance tomographies did not show clear indications that the damaged discs have already regenerated in comparison with the control group.

Not yet – of that, Steffen is confident. “Proving the tolerability of the therapy was our first important step.” Now he is working on the effectiveness of the stem cell injections, for example, with the targeted addition of growth factors. “If our method proves successful one day, it would be a pioneering step – for human medicine as well,” the neurologist says.


Literature:

Frank Steffen, Lucas Smolders, Anne Roentgen, Alessandro Bertolo, and Jivko Stoyanov. Bone Marrow-Derived Mesenchymal Stem Cells as Autologous Therapy in Dogs with Naturally Occurring Intervertebral Disc Disease: Feasibility, Safety and Preliminary Results. Tissue Engineering Part C: Methods. 4 May 2017, ahead of print. doi:10.1089/ten.TEC.2017.0033


Contact:

Prof. Dr. Frank Steffen
Clinic for Small Animal Surgery
Vetsuisse Faculty
University of Zurich
Phone: +41 44 635 84 47
E-mail: fsteffen@vetclinics.uzh.ch

Media Relations
University of Zurich
Phone: +41 44 634 44 67
E-mail: mediarelations@kommunikation.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2017/stem-cells-for-intervertebral-dis...

Nathalie Huber | Universität Zürich

Further reports about: injections stem cell therapy stem cells

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>