Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why nerve cells die in ALS and frontotemporal dementia

06.02.2018

USC researchers discover a cellular mechanism responsible for at least 10 percent each of ALS and frontotemporal dementia cases

Scientists have for the first time discovered a mechanism that limits the number of "cellular janitors" in the nervous system, leading to increased risk for two neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, according to a Keck School of Medicine of USC study published today in Nature Medicine.


Motor nerve cells are used to test thousands of drugs.

Credit: Keck School of Medicine of USC/Ichida Lab

In the study, Yingxiao "TK" Shi and Shaoyu Sebastian Lin in the Justin Ichida Laboratory at USC Stem Cell describe how a mutation in a gene called C9ORF72 leads to toxicity in nerve cells. It causes 10 percent of all cases of ALS and an additional 10 percent of frontotemporal dementia.

"We figured out how the most common form of ALS causes nerve cell death, and nerve cell death is what causes patients to become paralyzed or lose control of neuromuscular functions," said Ichida, an assistant professor of stem cell and regenerative medicine at the Keck School of Medicine and a New York Stem Cell Foundation-Robertson Investigator.

Damage begins as a cellular chain reaction. Normally, the C9ORF72 gene, or C9, produces a protein that is required to make lysosomes, which act as cellular janitors to capture and remove toxic proteins and garbage. Without a normal amount of lysosomes, motor nerve cells accumulate toxic garbage and die.

To understand how this happens, the researchers extracted blood from ALS patients carrying the C9 mutation and reprogrammed these blood cells into motor nerve cells that degenerate and die in the disease. They also extracted blood from healthy patients, reprogrammed these blood cells into motor nerve cells and used gene editing to delete the C9 gene.

Whether patient-derived or gene-edited, all motor nerve cells with the mutation had reduced amounts of the protein normally made by the C9 gene. And by adding the supplemental C9 protein, the researchers could stop the motor nerve cells from degenerating.

"The C9 protein is required to construct the janitors of the cells, which are the lysosomes, and without them you have buildup of proteins in the cell that become a kind of toxic agent that causes the cells to die," Ichida said.

Specifically, insufficient lysosomes cause cells to accumulate two key types of garbage: a big, toxic protein produced by the mutated C9 gene and molecules that receive signals from a neurotransmitter known as glutamate. Too much glutamate hyperstimulates motor nerve cells to death, a phenomenon known as "excitotoxicity."

Guided by these discoveries, the Ichida Lab is now using the patient-derived motor nerve cells to test thousands of potential drugs, with focus on those that affect lysosomes. The goal is to find potential drugs that slow or stop degeneration of these motor nerve cells in petri dishes - and eventually in patients.

According to the National Institutes of Health, ALS is a group of rare neurological diseases that mainly involve the nerve cells (neurons) responsible for controlling voluntary muscle movement, such as chewing, walking and talking. ALS, sometimes called, Lou Gehrig's disease, is progressive and incurable at this time. It is part of a wider group of disorders known as motor neuron diseases. The U.S. Centers for Disease Control and Prevention estimates between 14,000 to 15,000 Americans have ALS.

###

Co-authors include Kim A. Staats, Yichen Li, Wen-Hsuan Chang, Shu-Ting Hung, Eric Hendricks, Gabriel Linares, Yaoming Wang, Brent Wilkinson, Louise Menendez, Toru Sugawara, Phillip Woolwine, Mickey Huang, Michael J. Cowan, Brandon Ge, Nicole Koutsodendris, K. Perry Sandor, Jacob Komberg, Valerie Hennes, Marcelo Coba and Berislav Z. Zlokovic from USC; Esther Y. Son from Stanford University; Xinmei Wen and Davide Trotti from Thomas Jefferson University; Kassandra Kisler and Amy R. Nelson from USC and Thomas Jefferson University; Vamshidhar R. Vangoor, Ketharini Senthilkumar, Leonard H. van den Berg, and R. Jeroen Pasterkamp from the University Medical Center Utrecht in the Netherlands; Tze-Yuan Cheng and Shih-Jong J. Lee from DRVision Technologies; Paul August from Icagen Corp.; Jason A. Chen, Nicholas Wisniewski, Victor Hanson-Smith, T. Grant Belgard and Alice Zhang from Verge Genomics; and Chris Grunseich and Michael Ward from the National Institute of Neurological Disorders and Stroke.

Seventy-five percent of the research was supported with federal funding totaling $6 million from the National Institutes of Health (AG039452, AG023084, NS034467, R00NS077435 and R01NS097850, T32DC009975-04) and the U.S. Department of Defense (W81XWH-15-1-0187). Twenty-five percent of the work was supported by $2 million from private and non-U.S. sources, including the ALS Foundation Netherlands (TOTALS), Epilepsiefonds (12-08, and 15-05), VICI grant Netherlands Organisation for Scientific Research (NWO), the Donald E. and Delia B. Baxter Foundation, the Tau Consortium, the Frick Foundation for ALS Research, the Muscular Dystrophy Association, the New York Stem Cell Foundation, the Regenerative Medicine Initiative at the Keck School of Medicine of USC, the USC Broad Innovation Award, the Southern California Clinical and Translational Science Institute, and the Walter V. and Idun Berry Postdoctoral Fellowship.

Media Contact

Zen Vuong
zvuong@usc.edu
213-300-1381

 @USC

http://www.usc.edu 

Zen Vuong | EurekAlert!

Further reports about: Cell blood cells cell death cells die dementia lysosomes nerve cells

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>