Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual journey through the heart

07.08.2015

Fraunhofer MEVIS creates a three-dimensional movie for the Ars Electronica Center

Medical research and art sometimes meet at their finest: experts from the Fraunhofer Institute for Medical Image Computing MEVIS in Bremen produced a three-dimensional movie, showing the human heart in full action. The organ beats and pumps, and special techniques visualize the dynamic flow of blood in the vessels. The sequence is part of a new interactive three-dimensional experience to be presented by the “Ars Electronica Center” in the “Deep Space 8K” experience in Linz on August 7.


Representation of the blood flow in the aorta for examination of the systemic circulation.

The Ars Electronica Center and its annual festival belong to the leading showrooms and exhibition centers for digital culture. As a museum of the future, it shows the visitors how nascent technologies, still in development, could shape the daily life of the future – from the workplace to leisure time and art.

The Deep Space projection hall is a part of the Center and can display three-dimensional images, movies, and animations in extremely high resolution. Deep Space has been refitted with new 8K technology that improves image sharpness and color intensity. Moderators accompany the experience with live expert commentary.

For the reopening on August 7, the Ars Electronica Center has developed a new three-dimensional program for the Deep Space adapted to the optimized projection technology. “The Universe Within” offers an interactive journey through a three-dimensional visualization of our body and shows how organs, bones, muscles, and blood vessels appear and function. Fraunhofer MEVIS contributed a central element to the exhibit – a three-dimensional sequence of the human heart.

Images from a CT scanner build up a three-dimensional block. Gradually, the ribs, diaphragm, and beating human heart can be recognized. The camera perspective changes, and a single image layer comes to the foreground, showing how heart valves open and close with the heartbeat. Refined algorithms visualize the blood flow based on an MR image that appears thereafter.

Hundreds of colored sparks fly in rhythm with the heartbeat through the vessels and heart chambers and visualize the areas where blood flow is particularly fast and forceful. When not accompanied by live commentary, a soundscape composed specifically for the sequence can be heard.

The three-minute sequence is based exclusively on real medical data gathered by the Institute’s MRI scanner. The CT data were provided by the University Clinic in Marburg. Fraunhofer scientists created the movie using “MeVisLab”, a software package for developing medical image processing assistance systems for physicians. Experts and industrial partners around the world currently use MeVisLab.

The researchers used sophisticated volume rendering methods to create the aesthetical images. The blood flow sequence is a product of a new method, in the process of being applied to the clinical routine in Bremen, called particle-based flow visualization. The concept stems from computer simulations for wind channel experiments. Fed with the MRI data and adjusted to the human body, it can now visualize blood streams in vascular system.

Other techniques used for the video have already proven themselves in the clinical routine. Doctors can use software assistants to view specific images of the data set that present important details, such as heart valves, particularly well.

The heart sequence is not the first joint project between Bremen and Linz. At the Ars Electronica Festival in 2013, Fraunhofer MEVIS showcased “Poking Florian,” an interactive installation that visualizes the nerve fibers and their function in the human brain. Other cultural institutions also profit from exhibits designed at Fraunhofer MEVIS. Recently, “Image Man” was installed in the Universum Science Center in Bremen. The exhibit is a life-size figure containing ten segments that present the possibilities of different imaging methods, such as X-ray, CT, and MRI.

The experts work not only on medical videos and hands-on exhibits based on real medical data; they also develop applications for virtual reality glasses. In the future, their programs could help train medical personnel and explain information to patients.

Watch 2-D movie on YouTube: https://youtu.be/0B0d0fPVcKI

Weitere Informationen:

http://s.fhg.de/WpM

Bianka Hofmann | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>