Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual journey through the heart

07.08.2015

Fraunhofer MEVIS creates a three-dimensional movie for the Ars Electronica Center

Medical research and art sometimes meet at their finest: experts from the Fraunhofer Institute for Medical Image Computing MEVIS in Bremen produced a three-dimensional movie, showing the human heart in full action. The organ beats and pumps, and special techniques visualize the dynamic flow of blood in the vessels. The sequence is part of a new interactive three-dimensional experience to be presented by the “Ars Electronica Center” in the “Deep Space 8K” experience in Linz on August 7.


Representation of the blood flow in the aorta for examination of the systemic circulation.

The Ars Electronica Center and its annual festival belong to the leading showrooms and exhibition centers for digital culture. As a museum of the future, it shows the visitors how nascent technologies, still in development, could shape the daily life of the future – from the workplace to leisure time and art.

The Deep Space projection hall is a part of the Center and can display three-dimensional images, movies, and animations in extremely high resolution. Deep Space has been refitted with new 8K technology that improves image sharpness and color intensity. Moderators accompany the experience with live expert commentary.

For the reopening on August 7, the Ars Electronica Center has developed a new three-dimensional program for the Deep Space adapted to the optimized projection technology. “The Universe Within” offers an interactive journey through a three-dimensional visualization of our body and shows how organs, bones, muscles, and blood vessels appear and function. Fraunhofer MEVIS contributed a central element to the exhibit – a three-dimensional sequence of the human heart.

Images from a CT scanner build up a three-dimensional block. Gradually, the ribs, diaphragm, and beating human heart can be recognized. The camera perspective changes, and a single image layer comes to the foreground, showing how heart valves open and close with the heartbeat. Refined algorithms visualize the blood flow based on an MR image that appears thereafter.

Hundreds of colored sparks fly in rhythm with the heartbeat through the vessels and heart chambers and visualize the areas where blood flow is particularly fast and forceful. When not accompanied by live commentary, a soundscape composed specifically for the sequence can be heard.

The three-minute sequence is based exclusively on real medical data gathered by the Institute’s MRI scanner. The CT data were provided by the University Clinic in Marburg. Fraunhofer scientists created the movie using “MeVisLab”, a software package for developing medical image processing assistance systems for physicians. Experts and industrial partners around the world currently use MeVisLab.

The researchers used sophisticated volume rendering methods to create the aesthetical images. The blood flow sequence is a product of a new method, in the process of being applied to the clinical routine in Bremen, called particle-based flow visualization. The concept stems from computer simulations for wind channel experiments. Fed with the MRI data and adjusted to the human body, it can now visualize blood streams in vascular system.

Other techniques used for the video have already proven themselves in the clinical routine. Doctors can use software assistants to view specific images of the data set that present important details, such as heart valves, particularly well.

The heart sequence is not the first joint project between Bremen and Linz. At the Ars Electronica Festival in 2013, Fraunhofer MEVIS showcased “Poking Florian,” an interactive installation that visualizes the nerve fibers and their function in the human brain. Other cultural institutions also profit from exhibits designed at Fraunhofer MEVIS. Recently, “Image Man” was installed in the Universum Science Center in Bremen. The exhibit is a life-size figure containing ten segments that present the possibilities of different imaging methods, such as X-ray, CT, and MRI.

The experts work not only on medical videos and hands-on exhibits based on real medical data; they also develop applications for virtual reality glasses. In the future, their programs could help train medical personnel and explain information to patients.

Watch 2-D movie on YouTube: https://youtu.be/0B0d0fPVcKI

Weitere Informationen:

http://s.fhg.de/WpM

Bianka Hofmann | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>