Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UV light robot to clean hospital rooms could help stop spread of 'superbugs'

15.04.2015

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant professor at the Texas A&M College of Medicine and chief of infectious diseases at the Central Texas Veterans Health Care System in Temple, is studying the effectiveness of a germ-zapping robot to clean hospital rooms, which could hold the key to preventing the spread of "superbugs" - in turn, saving countless dollars and, most importantly, lives.


Surfaces in hospital rooms such as tray tables, bedrails, call buttons and grab bars can be reservoirs for bacteria. A new UV light method for cleaning hospital rooms could help stop the spread of dangerous bacteria, and in turn, save lives.

Credit: Texas A&M Health Science Center

Keeping hospital rooms clean is important to prevent the spread of infections from one patient to another. Surfaces in hospital rooms such as tray tables, bedrails, call buttons and grab bars can be reservoirs for bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), which can be difficult to treat, and in some cases, fatal.

"A typical 100-bed hospital sees about 10-20 hospital-acquired infections a year," Jinadatha says. "Our goal is to get to zero infections."

In addition to the human toll, hospitals now have a financial reason to reduce hospital-acquired infections: beginning in 2017, the federal government will dramatically reduce Medicare payments to hospitals that exceed incidences of certain conditions, such as hospital-acquired infections.

Since the current method of cleaning hospital rooms relies heavily on housekeeping staff, who often have a high turnover rate, Jinadatha has focused his research on using technology to prevent hospital-acquired infections.

In particular, he is studying the effectiveness of a pulsed xenon ultraviolet (UV) light system that was developed in Texas. Jinadatha has been among the first to study the system since it was introduced in 2011.

The device - which Jinadatha admits bears a striking resemblance to the fictional robot in Star Wars known as R2-D2 - has a large saucer-shaped head on top of a column that rises up to reveal a bulb filled with xenon gas.

When the system is switched on, high-voltage electricity passes through the bulb and releases a spectrum of UV light that binds to the DNA of organisms and kills them.

Last year, Jinadatha published a study that compared the effectiveness of manual disinfection alone to manual disinfection plus the use of UV light.

This study found that manual cleaning plus UV light killed more than 90 percent of the bacteria, compared to 70 percent with manual cleaning alone. Of particular note was the fact that manual disinfection plus UV light killed 99 percent of the bacteria that cause MRSA.

Jinadatha's latest study, which was published earlier this year in the American Journal of Infection Control, looked at the effectiveness of UV light disinfection by itself. This study found that in just 12 minutes, the UV light system cut the amount bacteria in the room by about 70 percent - roughly the same level of effectiveness as manual disinfection.

Jinadatha stresses that he would never recommend that a hospital use the UV light system by itself, but he believes it does have value as a "safety net" to kill bacteria that traditional cleaning may miss. Currently the system is being used in 40 VA hospitals across the country and about 200 private hospitals. He predicts it will eventually become standard equipment at all hospitals.

"There is no one thing that will take away the problem of hospital-acquired infections, but we are slowly chipping away at it," he says.

Media Contact

Holly Shive
hshive@tamhsc.edu
979-436-0613

http://www.tamu.edu 

 

Holly Shive | EurekAlert!

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>