Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UT Southwestern scientists discover new clues to how weight loss is regulated


A hormone seen as a popular target to develop weight-loss drugs works by directly targeting the brain and triggering previously unknown activity in the nervous system, UT Southwestern Medical Center obesity researchers have found.

The fibroblast growth factor 21 (FGF21) hormone has been a key target for developing weight-loss drugs because the protein increases energy expenditure, causing the body to burn calories. But how the hormone worked wasn't known until now.

This image shows Dr. David Mangelsdorf and Dr. Steven Kliewer.

Credit: UT Southwestern

UT Southwestern researchers tracking the hormone discovered that FGF21 acts directly on the brain, activating another hormone called corticotropin-releasing factor (CRF). CRF then stimulates the nervous system, activating brown adipose tissue, which generates body heat by burning fat.

"FGF21 is well known for playing a role in weight loss and we had previously shown that the hormone can act directly on the brain in mice to influence functions like reproduction. In the new study we show that FGF21 also acts directly on the brain to regulate obesity," said Dr. Steven Kliewer, Professor of Molecular Biology and Pharmacology, who holds the Nancy B. and Jake L. Hamon Distinguished Chair in Basic Cancer Research at UT Southwestern.

Specifically, researchers found that the FGF21-CRF pathway activates a part of the nervous system that controls various involuntary body functions, called the sympathetic nervous system, to signal to brown fat. Brown fat is often considered the "good" fat that actually burns energy by generating heat — called thermogenesis — to protect from the cold. Once brown fat receives a "weight loss" signal, the tissue burns fat.

The findings, published in the journal Cell Metabolism, are important to ongoing efforts to understand obesity at a molecular level and thus better respond to the obesity epidemic.

More than one-third of U.S. adults — about 35 percent — are obese, according to the Centers for Disease Control, with obesity-related conditions such as heart disease, stroke, type 2 diabetes, and certain types of cancer among the leading causes of preventable disease. Obesity also takes a dramatic financial toll, costing an estimated $150 billion annually or, on an individual basis, an additional $1,429 in higher medical costs than those of normal weight.

"We have made great strides in understanding obesity in recent years," said senior author Dr. David Mangelsdorf, Chairman of Pharmacology, a Howard Hughes Medical Institute investigator, and holder of the Distinguished Chair in Pharmacology, and the Raymond and Ellen Willie Distinguished Chair in Molecular Neuropharmacology in Honor of Harold B. Crasilneck, Ph.D. "What this research shows is that the central nervous system must be considered when looking for weight loss treatments."

Dr. Mangelsdorf and Dr. Kliewer are members of UT Southwestern's Taskforce for Obesity Research (TORS), composed of investigators from diverse disciplines who examine the behavioral, metabolic, and cellular mechanisms that cause obesity and metabolic syndrome.

Their primary goal is to elucidate how the brain regulates food intake and energy expenditure, and to determine how dysregulation of glucose and lipid metabolism in the liver causes the metabolic syndrome. The long-term goal is to develop more directed approaches to prevent obesity and treat related metabolic complications. Dr. Mangelsdorf and Dr. Kliewer are part of the team studying the molecular biology of energy metabolism.


Other UT Southwestern researchers in this latest study include postdoctoral researchers Dr. Bryn Owen, Dr. Xunshan Ding, Dr. Katie Colbert-Coate, and Dr. Angie Bookout.

The study was supported by the National Institutes of Health, the Robert A. Welch Foundation, the American Heart Association, and the Howard Hughes Medical Institute.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to about 92,000 hospitalized patients and oversee approximately 2.1 million outpatient visits a year.

Russell Rian | Eurek Alert!
Further information:

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>