Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientists discover new clues to how weight loss is regulated

24.10.2014

A hormone seen as a popular target to develop weight-loss drugs works by directly targeting the brain and triggering previously unknown activity in the nervous system, UT Southwestern Medical Center obesity researchers have found.

The fibroblast growth factor 21 (FGF21) hormone has been a key target for developing weight-loss drugs because the protein increases energy expenditure, causing the body to burn calories. But how the hormone worked wasn't known until now.


This image shows Dr. David Mangelsdorf and Dr. Steven Kliewer.

Credit: UT Southwestern

UT Southwestern researchers tracking the hormone discovered that FGF21 acts directly on the brain, activating another hormone called corticotropin-releasing factor (CRF). CRF then stimulates the nervous system, activating brown adipose tissue, which generates body heat by burning fat.

"FGF21 is well known for playing a role in weight loss and we had previously shown that the hormone can act directly on the brain in mice to influence functions like reproduction. In the new study we show that FGF21 also acts directly on the brain to regulate obesity," said Dr. Steven Kliewer, Professor of Molecular Biology and Pharmacology, who holds the Nancy B. and Jake L. Hamon Distinguished Chair in Basic Cancer Research at UT Southwestern.

Specifically, researchers found that the FGF21-CRF pathway activates a part of the nervous system that controls various involuntary body functions, called the sympathetic nervous system, to signal to brown fat. Brown fat is often considered the "good" fat that actually burns energy by generating heat — called thermogenesis — to protect from the cold. Once brown fat receives a "weight loss" signal, the tissue burns fat.

The findings, published in the journal Cell Metabolism, are important to ongoing efforts to understand obesity at a molecular level and thus better respond to the obesity epidemic.

More than one-third of U.S. adults — about 35 percent — are obese, according to the Centers for Disease Control, with obesity-related conditions such as heart disease, stroke, type 2 diabetes, and certain types of cancer among the leading causes of preventable disease. Obesity also takes a dramatic financial toll, costing an estimated $150 billion annually or, on an individual basis, an additional $1,429 in higher medical costs than those of normal weight.

"We have made great strides in understanding obesity in recent years," said senior author Dr. David Mangelsdorf, Chairman of Pharmacology, a Howard Hughes Medical Institute investigator, and holder of the Distinguished Chair in Pharmacology, and the Raymond and Ellen Willie Distinguished Chair in Molecular Neuropharmacology in Honor of Harold B. Crasilneck, Ph.D. "What this research shows is that the central nervous system must be considered when looking for weight loss treatments."

Dr. Mangelsdorf and Dr. Kliewer are members of UT Southwestern's Taskforce for Obesity Research (TORS), composed of investigators from diverse disciplines who examine the behavioral, metabolic, and cellular mechanisms that cause obesity and metabolic syndrome.

Their primary goal is to elucidate how the brain regulates food intake and energy expenditure, and to determine how dysregulation of glucose and lipid metabolism in the liver causes the metabolic syndrome. The long-term goal is to develop more directed approaches to prevent obesity and treat related metabolic complications. Dr. Mangelsdorf and Dr. Kliewer are part of the team studying the molecular biology of energy metabolism.

###

Other UT Southwestern researchers in this latest study include postdoctoral researchers Dr. Bryn Owen, Dr. Xunshan Ding, Dr. Katie Colbert-Coate, and Dr. Angie Bookout.

The study was supported by the National Institutes of Health, the Robert A. Welch Foundation, the American Heart Association, and the Howard Hughes Medical Institute.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to about 92,000 hospitalized patients and oversee approximately 2.1 million outpatient visits a year.

Russell Rian | Eurek Alert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>