Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using nanoparticles to combat arteriosclerosis

07.01.2016

In industrialized countries, a particularly high number of people suffer from arteriosclerosis – with fatal consequences: Deposits in the arteries lead to strokes and heart attacks. A team of researchers under the leadership of the University of Bonn has now developed a method for guiding replacement cells to diseased vascular segments using nanoparticles. The scientists demonstrated in mice that the fresh cells actually exert their curative effect in these segments. However, much research remains to be done prior to use in humans. The results are now being published in the renowned journal "ACS NANO."

In arterial calcification (arteriosclerosis), pathological deposits form in the arteries and this leads to vascular stenosis. Strokes and heart attacks are a frequent outcome due to the resultant insufficient blood flow.


Fluorescence-labeled cells with nanoparticles

Photo: Dr. Sarah Rieck/Dr. Sarah Vosen/University of Bonn


Juniorprofessor Dr. Daniela Wenzel (left) and Dr. Sarah Rieck.

Photo: Katharina Wislsperger/Ukom UKB

Endothelial cells which line the blood vessels play an important role here. "They produce nitric oxide and also regulate the expansion of the vessels and the blood pressure," explains junior professor Dr. med. Daniela Wenzel from the Institute of Physiology I of the University of Bonn. Damage to the endothelial cells is generally the insidious onset of arteriosclerosis.

A team of researchers working with Jun.-Prof. Wenzel, together with the Technische Universität München, the Institute of Pharmacology and Toxicology at the University of Bonn Hospital and the Physikalisch-Technische Bundesanstalt Berlin, developed a method with which damaged endothelial cells can regenerate and which they successfully tested in mice.

The scientists transferred the gene for the enzyme eNOS into cultured cells with the aid of viruses. This enzyme stimulates nitic oxide production in the endothelium like a turboloader. "The enzyme is an essential precondition for the full restoration of the original function of the endothelial cells," reports Dr. Sarah Vosen from Jun.-Prof. Wenzel's team.

A magnet delivers the nanoparticles to the desired site

Together with the gene, the scientists also introduced tiny nanoparticles, measuring a few hundred nanometers (one-millionth of a millimeter), with an iron core. "The iron changes the properties of the endothelial cells: They become magnetic," explains Dr. Sarah Rieck from the Institute of Physiology I of the University of Bonn.

The nanoparticles ensure that the endothelial cells equipped with the "turbo" gene can be delivered to the desired site in the blood vessel using a magnet where they exert their curative effect. Researchers at the Technische Universität München have developed a special ring-shaped magnet configuration for this which ensures that the replacement cells equipped with nanoparticles line the blood vessel evenly.

The researchers tested this combination method in mice whose carotid artery endothelial cells were injured. They injected the replacement cells into the artery and were able to position them at the correct site using the magnet.

"After half an hour, the endothelial cells adhered so securely to the vascular wall that they could no longer be flushed away by the bloodstream," says Jun.-Prof. Wenzel. The scientists then removed the magnets and tested whether the fresh cells had fully regained their function. As desired, the new endothelial cells produced nitric oxide and thus expanded the vessel, as is usual in the case of healthy arteries. "The mouse woke up from the anesthesia and ate and drank normally," reported the physiologist.

Transfer to humans requires additional research

Normally, doctors surgically remove vascular deposits from the carotid artery and in some cases place a vascular support (stent) to correct the bottleneck in the crucial blood supply. "However, these areas frequently become blocked with deposits once again," reports Jun.-Prof. Wenzel.

"In contrast, we are getting to the root of the problem and are restoring the original condition of healthy endothelial cells." The researchers hope that what works in mice is also possible in humans, in principle. However, there are still many challenges to overcome. Jun.-Prof. Wenzel: "There is still a considerable need for research."

The study was supported by funding to the junior research group “Magnetic nanoparticles (MNPs) - endothelial cell replacement in injured vessels” by the State of North Rhine-Westphalia and to the DFG Research Unit FOR 917 “Nanoguide”.

Publication: Vascular repair by circumferential cell therapy using magnetic nanoparticles and tailored magnets, journal "ACS NANO", DOI: 10.1021/acsnano.5b04996

Detailed image caption: On the left are fluorescence-labeled cells with nanoparticles: The cellular nuclei are shown in blue, the fluorescence labeling is shown in green and the nanoparticles in the cells are identified by arrows. The middle photo shows a blood vessel populated with these cells (green). On the right is a detailed image of a vascular wall with the eNOS protein identified (red). © Photo: Dr. Sarah Rieck/Dr. Sarah Vosen/University of Bonn

Media contact information:

Junior professor Dr. med. Daniela Wenzel
Institute of Physiology I
University of Bonn
Tel. 0228/6885216
E-Mail: dwenzel@uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>