Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unwanted impact of antibiotics broader, more complex than previously known

11.02.2015

Researchers at Oregon State University have discovered that antibiotics have an impact on the microorganisms that live in an animal's gut that's more broad and complex than previously known.

The findings help to better explain some of the damage these medications can do, and set the stage for new ways to study and offset those impacts.

The work was published online in the journal Gut, in research supported by Oregon State University, the Medical Research Foundation of Oregon and the National Institutes of Health.

Researchers have known for some time that antibiotics can have unwanted side effects, especially in disrupting the natural and beneficial microbiota of the gastrointestinal system. But the new study helps explain in much more detail why that is happening, and also suggests that powerful, long-term antibiotic use can have even more far-reaching effects.

Scientists now suspect that antibiotic use, and especially overuse, can have unwanted effects on everything from the immune system to glucose metabolism, food absorption, obesity, stress and behavior.

The issues are rising in importance, since 40 percent of all adults and 70 percent of all children take one or more antibiotics every year, not to mention their use in billions of food animals. Although when used properly antibiotics can help treat life-threatening bacterial infections, more than 10 percent of people who receive the medications can suffer from adverse side effects.

"Just in the past decade a whole new universe has opened up about the far-reaching effects of antibiotic use, and now we're exploring it," said Andrey Morgun, an assistant professor in the OSU College of Pharmacy. "The study of microbiota is just exploding. Nothing we find would surprise me at this point."

This research used a "cocktail" of four antibiotics frequently given to laboratory animals, and studied the impacts.

"Prior to this most people thought antibiotics only depleted microbiota and diminished several important immune functions that take place in the gut," Morgun said. "Actually that's only about one-third of the picture. They also kill intestinal epithelium. Destruction of the intestinal epithelium is important because this is the site of nutrient absorption, part of our immune system and it has other biological functions that play a role in human health."

The research also found that antibiotics and antibiotic-resistant microbes caused significant changes in mitochondrial function, which in turn can lead to more epithelial cell death. That antibiotics have special impacts on the mitochondria of cells is both important and interesting, said Morgun, who was a co-leader of this study with Dr. Natalia Shulzhenko, a researcher in the OSU College of Veterinary Medicine who has an M.D. from Kharkiv Medical University.

Mitochondria plays a major role in cell signaling, growth and energy production, and for good health they need to function properly.

But the relationship of antibiotics to mitochondria may go back a long way. In evolution, mitochondria descended from bacteria, which were some of the earliest life forms, and different bacteria competed with each other for survival. That an antibiotic would still selectively attack the portion of a cell that most closely resembles bacteria may be a throwback to that ingrained sense of competition and the very evolution of life.

Morgun and Schulzhenko's research group also found that one of the genes affected by antibiotic treatment is critical to the communication between the host and microbe.

"When the host microbe communication system gets out of balance it can lead to a chain of seemingly unrelated problems," Morgun said.

Digestive dysfunction is near the top of the list, with antibiotic use linked to such issues as diarrhea and ulcerative colitis. But new research is also finding links to obesity, food absorption, depression, immune function, sepsis, allergies and asthma.

This research also developed a new bioinformatics approach named "transkingdom network interrogation" to studying microbiota, which could help further speed the study of any alterations of host microbiota interactions and antibiotic impact. This could aid the search for new probiotics to help offset antibiotic effects, and conceivably lead to systems that would diagnose a person's microbiome, identify deficiencies and then address them in a precise and individual way.

Healthy microbiota may also be another way to address growing problems with antibiotic resistance, Morgun said. Instead of trying to kill the "bad" bacteria causing an illness, a healthy and functioning microbiota may be able to outcompete the unwanted microbes and improve immune function.

###

Collaborators on this research were from the OSU College of Pharmacy; OSU College of Veterinary Medicine; OSU College of Science; the National Cancer Institute; University of British Columbia; University of Maryland School of Medicine; and the National Institutes of Health.

Andrey Morgun | EurekAlert!

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>