Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the secrets of pulmonary hypertension

31.10.2014

UAlberta research team discovers a link between pulmonary hypertension, diabetes and cancer

A UAlberta team has discovered that a protein that plays a critical role in metabolism, the process by which the cell generates energy from foods, is important for the development of pulmonary hypertension, a deadly disease.

Pulmonary hypertension is caused by the narrowing of the blood vessels in the lung, due to excessive growth of cells in the blood vessel wall. The cells grow in number until they obstruct the vessels, causing the heart to struggle pushing blood through the lungs to the point where the heart fails and the patient dies.

Evangelos Michelakis, a professor in the Department of Medicine and senior author of the study published in the journal Cell Metabolism, says in a sense, the cells grow uncontrollably, resembling cancer cells, with which they share many molecular features. He adds that many patients with pulmonary hypertension, without being obese or diabetic, have features of insulin resistance, as if they were diabetic. Those links with cancer and diabetes have puzzled researchers trying to understand what causes pulmonary hypertension in order to develop much needed therapies.

"We may have an answer to that," says Michelakis. "Our previous work had suggested that mitochondria, the organelles in the cell that regulate metabolism, are involved in the development of pulmonary hypertension, but we did not know exactly how. We also knew that mitochondria are involved in the development of both cancer and diabetes."

"So we looked at a key regulator of mitochondrial function, a protein called Sirtuin3," says Roxane Paulin, a postdoctoral fellow in Michelakis' laboratory and first author of the study. "We found that in lab models of pulmonary hypertension and, more importantly, in tissues from 160 patients, Sirtuin3 was present in lower amounts and was less active in lab models and patients with pulmonary hypertension than in those without the disease. We were intrigued to find that lab models that just lacked Sirtuin 3, developed pulmonary hypertension. The same models have been shown by other researchers to develop diabetes and cancer."

Michelakis believes that although there is still much work that needs to be done, this is the first proof of a link between pulmonary hypertension, cancer and diabetes. "This work offers strong support to the theory that pulmonary hypertension has a metabolic basis and may facilitate our efforts to diagnose and treat the disease."

"When we used gene therapy to deliver the missing Sirtuin 3 to the lungs of lab models of pulmonary hypertension with an inhaled virus, we found that the disease improved significantly two weeks later, opening the possibility for similar gene therapy approaches to patients," says Paulin.

Michelakis adds, "The fact that we found a variant Sirtuin 3 gene that produces a defective Sirtuin 3 protein, (which has also been found in patients with metabolic syndrome, a form of diabetes) in the blood cells of many patients with pulmonary hypertension, suggests that it may be easy to identify the precise patients that may benefit from gene therapy the future."

The research team included members of the Department of Medicine (medical student Peter Dromparis, graduate students Gopinath Sutendra and Sotirios Zervopoulos, cardiology resident Vikram Gurtu, technicians Lyndsay Bowers and Alois Haromy and nurse practitioner Linda Webster) as well as professors Steeve Provencher and Sebastien Bonnet from Laval University. The work was funded by grants from the Canadian Institutes of Health Research and the University Hospital Foundation / Mazankowski Alberta Heart Institute.

The Pulmonary Hypertension Association of Canada estimates that 10,000 Canadians are affected by the disease, which remains incurable. November marks "pulmonary hypertension awareness month" worldwide.

Ross Neitz | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Health and Medicine:

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>