Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the secrets of pulmonary hypertension

31.10.2014

UAlberta research team discovers a link between pulmonary hypertension, diabetes and cancer

A UAlberta team has discovered that a protein that plays a critical role in metabolism, the process by which the cell generates energy from foods, is important for the development of pulmonary hypertension, a deadly disease.

Pulmonary hypertension is caused by the narrowing of the blood vessels in the lung, due to excessive growth of cells in the blood vessel wall. The cells grow in number until they obstruct the vessels, causing the heart to struggle pushing blood through the lungs to the point where the heart fails and the patient dies.

Evangelos Michelakis, a professor in the Department of Medicine and senior author of the study published in the journal Cell Metabolism, says in a sense, the cells grow uncontrollably, resembling cancer cells, with which they share many molecular features. He adds that many patients with pulmonary hypertension, without being obese or diabetic, have features of insulin resistance, as if they were diabetic. Those links with cancer and diabetes have puzzled researchers trying to understand what causes pulmonary hypertension in order to develop much needed therapies.

"We may have an answer to that," says Michelakis. "Our previous work had suggested that mitochondria, the organelles in the cell that regulate metabolism, are involved in the development of pulmonary hypertension, but we did not know exactly how. We also knew that mitochondria are involved in the development of both cancer and diabetes."

"So we looked at a key regulator of mitochondrial function, a protein called Sirtuin3," says Roxane Paulin, a postdoctoral fellow in Michelakis' laboratory and first author of the study. "We found that in lab models of pulmonary hypertension and, more importantly, in tissues from 160 patients, Sirtuin3 was present in lower amounts and was less active in lab models and patients with pulmonary hypertension than in those without the disease. We were intrigued to find that lab models that just lacked Sirtuin 3, developed pulmonary hypertension. The same models have been shown by other researchers to develop diabetes and cancer."

Michelakis believes that although there is still much work that needs to be done, this is the first proof of a link between pulmonary hypertension, cancer and diabetes. "This work offers strong support to the theory that pulmonary hypertension has a metabolic basis and may facilitate our efforts to diagnose and treat the disease."

"When we used gene therapy to deliver the missing Sirtuin 3 to the lungs of lab models of pulmonary hypertension with an inhaled virus, we found that the disease improved significantly two weeks later, opening the possibility for similar gene therapy approaches to patients," says Paulin.

Michelakis adds, "The fact that we found a variant Sirtuin 3 gene that produces a defective Sirtuin 3 protein, (which has also been found in patients with metabolic syndrome, a form of diabetes) in the blood cells of many patients with pulmonary hypertension, suggests that it may be easy to identify the precise patients that may benefit from gene therapy the future."

The research team included members of the Department of Medicine (medical student Peter Dromparis, graduate students Gopinath Sutendra and Sotirios Zervopoulos, cardiology resident Vikram Gurtu, technicians Lyndsay Bowers and Alois Haromy and nurse practitioner Linda Webster) as well as professors Steeve Provencher and Sebastien Bonnet from Laval University. The work was funded by grants from the Canadian Institutes of Health Research and the University Hospital Foundation / Mazankowski Alberta Heart Institute.

The Pulmonary Hypertension Association of Canada estimates that 10,000 Canadians are affected by the disease, which remains incurable. November marks "pulmonary hypertension awareness month" worldwide.

Ross Neitz | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>