Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Houston researchers identify less-invasive method for kidney diagnostics

01.06.2015

Optical probe would allow diagnosis without kidney biopsy, reducing complications

University of Houston researchers have identified a new, less-invasive method to provide diagnostic information on kidney disease and its severity.

In a paper published this month in the Journal of Biophotonics, Wei-Chuan Shih, assistant professor of electrical and computer engineering, and Chandra Mohan, Hugh Roy and Lillie Cranz Cullen, endowed professor of biomedical engineering, describe the use of an optical probe and Raman spectroscopy to differentiate between healthy and diseased kidneys.

Additional authors on the paper are Jingting Li, Yong Du, Ji Qi and Ravikumar Sneha, all of the University of Houston, and Anthony Chang of the University of Chicago.

Physicians traditionally use renal biopsy to directly observe kidney function. In addition to potential side effects, the number of renal biopsies a patient can undergo is limited because of damage to the kidney tissue.

For the study, Shih and Mohan did not look for a specific molecule or biomarker, such as creatinine, a molecular indicator of kidney function. Instead, the researchers relied upon the fact that a healthy kidney and a diseased kidney produce different Raman signals.

'There are some molecules that must be responsible for these different Raman signals, but we don't need to know what those molecules may be,' Mohan said. 'As long as there's a difference in the signal, that's good enough -- you can easily differentiate between a diseased kidney's Raman signal and a healthy kidney's Raman signal.'

Shih's expertise is in molecular sensing using light-based sensing technologies, such as optical probes. Mohan works on the genomics and proteomics of lupus and other autoimmune diseases, searching for new biomarkers and targets for treating autoimmune diseases.

Working together, the two realized that Shih's optical probes, which have been used for applications ranging from non-invasive glucose monitoring to sensing environmental hazards such as oil spills, could also be used to determine creatinine levels in patients with kidney disease.

'Raman spectroscopy provides molecular fingerprints that enable non-invasive or minimal invasive and label-free detection for the quantification of subtle molecular changes,' they wrote. 'It has the potential to largely reduce the complexity in diagnosing and monitoring anti-GBM (glomerular basement membrane) diseases. By adapting multivariate analysis to Raman spectroscopy, we have successfully differentiated between the diseased and the non-diseased with up to 100 percent accuracy, and among the severely diseased, the mildly diseased and the healthy with up to 98 percent accuracy.'

About 40 percent of lupus patients develop lupus nephritis, impairing their ability to effectively shed waste products and other toxins. Lupus nephritis is a leading cause of lupus-related deaths.

Earlier this year, Shih and Mohan collaborated on a paper published in Biomedical Optics Express to describe using the optical probes to provide a cheaper, faster and less invasive alternative to drawing blood to monitor a patient's creatinine levels.

Because creatinine has a unique Raman scattering signal, Shih said the optical probes can detect creatinine levels with far higher sensitivity than the chemical assay tests currently used. And the probe needs only a tiny sample of urine -- 5 microliters -- to provide an accurate reading.

For the work described in the Journal of Biophotonics, Shih and Mohan used mouse models with induced kidney disease to demonstrate the optical probe's ability to differentiate between a healthy and a diseased kidney without puncturing the organ. Shih's research team developed a metric to broadly quantify the level of disease using the Raman scattering signals.

'We are proposing the nephrologist will puncture the patient's skin, go to the surface of the kidney, and not puncture the kidney, but probe the surface of the tissue and acquire Raman signals,' Mohan said. 'The patient will feel a little pinch and poke through the skin, but the kidney is not hurt at all.'

The optical probe would be expected to result in far fewer complications, although Shih and Mohan caution that more research is needed before it can replace the kidney biopsy for patients with renal disease.

Media Contact

Jeannie Kever
jekever@uh.edu
713-743-0778

 @UH_News

http://www.uh.edu/news-events 

Jeannie Kever | EurekAlert!

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>