Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the Body’s Response to Worms and Allergies

24.04.2015

Research from The University of Manchester is bringing scientists a step closer to developing new therapies for controlling the body’s response to allergies and parasitic worm infections.

In a paper published in Nature Communications, Professor Andrew MacDonald and his team at the Manchester Collaborative Centre for Inflammation Research discovered a new way that immune cells control inflammation during worm infection or an allergic response like asthma. It’s important to understand how this type of inflammation is controlled as it can be very damaging and in some cases lead to long term conditions.


The University of Manchester

A dendritic cell

Professor MacDonald explains the reasons behind his work: “Although both worm infections and allergies exert a devastating global impact and lack effective vaccines or refined treatments, basic knowledge of the key cell types and mediators that control immunity and inflammation against either condition is currently limited.”

To study how inflammation is controlled the team looked at dendritic cells - a particular type of cell in the immune system that is a vital first responder to worms or allergies. The main function of dendritic cells is to recognise infection and switch on channels to combat it, including inflammation.

What isn’t known is precisely how immune cells switch on the kind of inflammation found during worm infections or allergies.

Professor MacDonald and his team studied dendritic cells in the lab and animal models to see how they were activated by parasitic worms, or lung allergens such as house dust mites.

They found that a particular protein called Mbd2 is central to the ability of dendritic cells to switch on inflammation in these kinds of settings. When the protein was removed it resulted in very different cells with a dramatically impaired ability to switch on inflammation.

The team also identified that Mbd2 is able to influence a wide range of genes important for multiple aspects of dendritic cell function without altering their DNA sequence, meaning that Mbd2 is an ‘epigenetic’ regulator.

Professor MacDonald explains: “For the first time we have identified that this protein is a key controller of dendritic cells during inflammation against parasitic worms or allergens. It’s an important step, as all inflammation is not identical, and scientists try to understand which specific cells and chemicals are more important in the body’s response to particular infections. In the past, medicines have had a broad approach, affecting all aspects of a condition rather than being targeted. In the future it might be possible to create medicines that control the inflammation caused specifically by an allergy or a parasitic worm, rather than by a virus such as a common cold.”

Professor MacDonald continues: “With billions of people affected by both allergies and worm infections around the world it is vital that we develop better methods of treatment. It’s also important to tackle the inflammation caused by these conditions, as it has been shown to play a role in the development of longer term diseases such as asthma.”

Contact Information
Morwenna Grills
Media Relations Officer
morwenna.grills@manchester.ac.uk
Phone: +44 (0)161 275 2111
Mob: +44 (0)7920 087466

Morwenna Grills | newswise

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>