Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the Body’s Response to Worms and Allergies

24.04.2015

Research from The University of Manchester is bringing scientists a step closer to developing new therapies for controlling the body’s response to allergies and parasitic worm infections.

In a paper published in Nature Communications, Professor Andrew MacDonald and his team at the Manchester Collaborative Centre for Inflammation Research discovered a new way that immune cells control inflammation during worm infection or an allergic response like asthma. It’s important to understand how this type of inflammation is controlled as it can be very damaging and in some cases lead to long term conditions.


The University of Manchester

A dendritic cell

Professor MacDonald explains the reasons behind his work: “Although both worm infections and allergies exert a devastating global impact and lack effective vaccines or refined treatments, basic knowledge of the key cell types and mediators that control immunity and inflammation against either condition is currently limited.”

To study how inflammation is controlled the team looked at dendritic cells - a particular type of cell in the immune system that is a vital first responder to worms or allergies. The main function of dendritic cells is to recognise infection and switch on channels to combat it, including inflammation.

What isn’t known is precisely how immune cells switch on the kind of inflammation found during worm infections or allergies.

Professor MacDonald and his team studied dendritic cells in the lab and animal models to see how they were activated by parasitic worms, or lung allergens such as house dust mites.

They found that a particular protein called Mbd2 is central to the ability of dendritic cells to switch on inflammation in these kinds of settings. When the protein was removed it resulted in very different cells with a dramatically impaired ability to switch on inflammation.

The team also identified that Mbd2 is able to influence a wide range of genes important for multiple aspects of dendritic cell function without altering their DNA sequence, meaning that Mbd2 is an ‘epigenetic’ regulator.

Professor MacDonald explains: “For the first time we have identified that this protein is a key controller of dendritic cells during inflammation against parasitic worms or allergens. It’s an important step, as all inflammation is not identical, and scientists try to understand which specific cells and chemicals are more important in the body’s response to particular infections. In the past, medicines have had a broad approach, affecting all aspects of a condition rather than being targeted. In the future it might be possible to create medicines that control the inflammation caused specifically by an allergy or a parasitic worm, rather than by a virus such as a common cold.”

Professor MacDonald continues: “With billions of people affected by both allergies and worm infections around the world it is vital that we develop better methods of treatment. It’s also important to tackle the inflammation caused by these conditions, as it has been shown to play a role in the development of longer term diseases such as asthma.”

Contact Information
Morwenna Grills
Media Relations Officer
morwenna.grills@manchester.ac.uk
Phone: +44 (0)161 275 2111
Mob: +44 (0)7920 087466

Morwenna Grills | newswise

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>