Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF researchers discover how to cultivate norovirus in human cells

10.11.2014

Noroviruses are pernicious intestinal viruses. They cause violent vomiting and diarrhea, and people ill with the virus remain contagious up to three days after they seem to recover.

Although a vaccine for these viruses is in clinical trials, there is still no medication to combat them. That’s in part because researchers have not been able to culture human noroviruses so they can test potential treatments — until now, according to a study by University of Florida Health researchers published Friday, Nov. 7 in the journal Science.


UF Health researchers Stephanie Karst, Ph.D. (right), and Melissa Jones, Ph.D., have discovered how to grow the norovirus in human cells, opening the way to develop antivirals and vaccines.

UF Health researcher Stephanie Karst, Ph.D., has found a way to grow a human norovirus by identifying a cell it targets in the intestine.

“The biggest hurdle to doing norovirus research for its entire history — it was discovered in 1972 — has been that we can’t culture the human viruses in a cell culture dish,” said Karst, an associate professor in the department of molecular genetics and microbiology in the UF College of Medicine. “That complicates every aspect of research. We can’t study how it replicates, we can’t test therapeutics and we can’t generate live virus vaccines.”

According to the Centers for Disease Control and Prevention, in the United States, human noroviruses cause 19 to 21 million cases of illness per year, and contribute to 56,000 to 71,000 hospitalizations and 570 to 800 deaths, mostly in young children and older adults. Noroviruses are resistant to many common disinfectants. Very little of the virus is needed to infect a host, so a surface may still contain enough virus to infect a person even after it is cleaned.

Previously, researchers speculated that noroviruses primarily target intestinal epithelial cells, which line the intestine and protect it from pathogens, Karst said. However, this new research demonstrates that the virus targets B cells, a type of white blood cell common in the intestine.

“That’s a big surprise,” Karst said. “You would think that any virus that’s going to target the intestine would instead target the intestinal epithelial cells because that’s the first cell the virus is going to encounter.”

Researchers also were surprised to find that bacteria present in the body’s gut flora, also known as commensal bacteria, helped the human norovirus infect B cells. Karst said scientists have long known that noroviruses need a particular kind of carbohydrate to infect cells.

“What we’ve shown is that noroviruses attach to that carbohydrate expressed on commensal bacteria, and that this interaction stimulates viral infection of the B cell,” Karst said. “This is a really exciting, emerging theme. A variety of intestinal viruses seem to exploit the bacteria that are present in our intestines all the time. These viral infections are enhanced by the presence of bacteria in the gut.”

UF research scientist Melissa Jones, Ph.D., a co-author on the paper, said the idea to study B cells came from Karst’s research on mouse noroviruses. UF scientists detected virus in Peyer’s patches, pockets of lymphoid nodules that line the intestine and survey the organ for pathogens.

This system can now be used to study norovirus replication and assess effectiveness of therapeutics and disinfectants, though more work needs to be done to increase its efficiency. Karst and Jones said while this is the first time researchers have been able to culture a human norovirus, the virus does not replicate to high levels in the current system, which hinders growth of the virus in the laboratory.

“Ultimately, this system should open up new avenues for norovirus vaccine and antiviral drug development,” Karst said.

Morgan Sherburne | EurekAlert!

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>