Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T research sheds new light on mysterious fungus that has major health consequences

23.11.2015

Researchers at the University of Toronto examined fungi in the mucus of patients with cystic fibrosis and discovered how one particularly cunning fungal species has evolved to defend itself against neighbouring bacteria.

A regular resident of our microbiome - and especially ubiquitous in the lungs of cystic fibrosis patients -the Candida albicans fungus is an "opportunistic pathogen." This means it usually leaves us alone, but can turn against us if our immune system becomes compromised.


Candida albicans in its round and filamentous (stringy) shapes.

Credit: University of Toronto

In fact, this fungus is among the most common causes of bloodstream infections, such as sepsis. As the population living with weakened immune systems has risen substantially over the past two decades - people living with HIV, having organ transplants or undergoing cancer chemotherapy are some examples - opportunistic fungal pathogens like this one have become an even greater threat. This is especially alarming considering we don't have any surefire anti-fungal drug to stop them.

"Fungi have a staggering impact on human health, infecting billions of people around the world and killing 1.5 million every year - that's in the range of tuberculosis and malaria," says Leah Cowen, lead researcher on the study, University of Toronto Molecular Genetics professor and Canada Research Chair in Microbial Genomics and Infectious Disease. "And yet, they are underappreciated and not well understood."

Candida albicans is a particularly wily fungus. Its signature maneuver is shapeshifting - it can morph from a round, single-celled yeast into a long stringy structure, allowing it to adapt to different environments and making it exceptionally harmful. For this study, researchers analyzed 89 mucus samples from 28 cystic fibrosis patients, using both high-throughput genetic sequencing as well as culture-based analysis. Candida albicans was predictably prevalent.

What surprised the researchers, however, was that some of this fungi began shifting into its stringy shape without any environmental cue - usually this transformation (called filamentation) doesn't happen spontaneously, but is triggered by the presence of certain substances, such as blood.

To see if there could be a genetic explanation, the researchers sequenced the genomes of these samples and found a common denominator. All but one had genetic mutations in a gene known to repress the change shape - called NRG1.

"This was a smoking gun," says Cowen. "This gene makes a protein that stops filamentation - like a brake. Because of these genetic mutations, the fungi lost this brake and were not able to stop these long strings from forming."

To find out why certain strains of this fungus would have developed this genetic variation, researchers looked to neighbouring bacteria. As part of an ongoing battle between microbes, certain bacteria, which are also found in cystic fibrosis patients, secrete molecules preventing the fungus from changing into its stringy shape.

The researchers tried exposing the mutated fungus to these bacterial rivals. Instead of responding to the bacterial signals, the fungus kept to its stringy form. The researchers believe these fungi have evolved to counter the tactics of their bacterial rivals.

"We think the interaction between bacteria and fungus drove this," says Cowen. "Usually losing control isn't a very good thing, but in this case it may be a great defense mechanism for Candida. These fungi have essentially learned to ignore the bacteria."

This study was published today in the journal PLOS Pathogens. It was part of a large interdisciplinary Canadian Institutes of Health Research grant, involving researchers across disciplines - clinicians, molecular biologists, evolutionary biologists and bioinformaticians collaborated on a variety of microbiome-focused studies.

Cowen is continuing research into the impact of fungal pathogens in cystic fibrosis patients, who are unable to clear microbes from their airways and suffer reduced lung function as a result. We still have no cure for this fatal genetic disease. She is also seeking to better understand the role of fungi in variety of other conditions.

Media Contact

Carolyn Morris
caro.morris@utoronto.ca
416-978-8092

 @UofTNews

http://www.utoronto.ca 

Carolyn Morris | EurekAlert!

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>