Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treating cardiovascular disorders -- and more -- with the flips of a switch

27.04.2018

Using light to switch calcium ions on and off may have implications for regenerative medicine

You've heard of "nature versus nurture," and philosophers argue about which is more important. But how does this work on the cellular level?


Cardiovascular disease treatment.

Credit: Yubin Zhou, Texas A&M University Health Science Center

Although genes stay the same throughout the lifespan, genetic code isn't necessarily a person's destiny. In fact, genes can be switched on and off to regulate a number of activities within cells. The body does this naturally in response to internal needs or changes in the external environment, and now scientists are able to switch these processes on and off in the lab.

In other words, researchers have created tools that would enable real-time activation of target genes in specific locations in the genome. This technology may help scientists to illuminate the gene function during different biological processes and hopefully be useful in regenerative medicine. Researchers at Texas A&M are creating a system to do this using two common elements: calcium and light.

Calcium--capable of far more than building strong bones--plays an important role in this system, as its signals regulate a number of activities within the cell, from growth and metabolism to homeostasis.

Turning on the flow of calcium ions

Yubin Zhou, PhD, associate professor at the Texas A&M Institute of Biosciences and Technology, leads the study developing what he calls the CaRROT system (for calcium-responsive transcriptional reprogramming tool). This system can control the transcription of genes within the body with high precision--in other words, it can dictate how, when and where genes create proteins that perform various cellular functions.

CaRROT uses a simple pulse of light or chemicals that can induce the flow of calcium ions into cells. The researchers described their technique in a recent article published in the journal ACS Synthetic Biology. "This technology should allow scientists to turn on or off a diverse array of genes at any location by simply switching the light or adding or withdrawing activating compounds," Zhou said.

The researchers designed CaRROT to hijack the calcium signals generated by light (with Opto-CRAC, another technology Zhou and his team developed) to deliver the genome-engineering tool derived from the CRISPR/Cas9 system to turn on genes. "When the light is switched on, the gates controlling calcium ions open to allow the flow of calcium from the external space into the cytoplasm of the cell," said Nhung Nguyen, a graduate student in Zhou's lab who led this work. "This process ultimately turns on the expression of specific genes." The turning on of gene expression then leads to changes in the function of the cell.

"We have screened dozens of engineered proteins and undergone numerous rounds of optimization to make the CaRROT system strictly responsive to light," added Lian He, PhD, a graduate student in Zhou's lab and a co-first author of the study. To evaluate how effective CaRROT really is in mammalian cells, the team will test it on genes that control the differentiation of neuron and skeletal muscle. They hope that they can use CaRROT in regenerative medicine to drive the precise differentiation of stem cells into whatever type of organ is required, just by illuminating the cells with light.

"The improvement of light penetration in deep tissue gives us the optimism that we could use CaRROT to reprogram cells in damaged organs," said Yun Huang, PhD, a collaborative senior author of the study. "It is possible that one day, by just exposing the tissues to light, we can heal the wound or accelerate the regeneration of injured tissues by photo-tuning coordinated gene expression."

Turning calcium influx off

In a second study recently published in the journal Angewandte Chemie as a cover story, Zhou and his team invented a new optogenetic tool that can do the opposite trick. With light shining upon cells in the 'excitable' tissues such as the nervous and cardiovascular systems, calcium influx through gateways on the membrane of the cell, called voltage-gated calcium channels, can be turned off. These channels, which constitute the major route of calcium entry into the cell, regulate a series of physiological processes. Because their dysfunction is involved in many diseases, they are considered an important therapeutic target for cardiovascular and neuropsychiatric disorders.

Traditional calcium-channel blockers approved by the United States Food and Drug Administration have been widely used to treat cardiovascular disorders including high blood pressure, arrhythmia and coronary artery disease. However, these drugs tend to cause side effects--including headache, edema, dangerously low blood pressure and palpitations--due to their cytotoxicity and off-target effects. "Because of these side effects, generating new interventional approaches to complement the traditional calcium-channel blockers is much needed in the clinic," Zhou said. "Our new optogenetic tool provides a non-conventional method to interrogate physiological and pathophysiological processes medicated by these voltage-gated calcium channels."

Zhou and his collaborators combined genetic strategies with optical techniques to engineer a novel class of genetically encoded inhibitors for these voltage-gated calcium channels. "After tremendous efforts of optimization, we developed an ideal photoswitchable inhibitor, which we're calling optoRGK. OptoRGK exhibited excellent light-inducible inhibition of calcium ion entry in excitable cells," said Guolin Ma, PhD, an assistant project scientist in Zhou's lab, who spearheaded the project.

The team tested this tool in cardiac muscle cells, which showed rhythmic oscillations of calcium in the dark that matched the heart beating rhythm. "However, upon blue light illumination, the rhythmic oscillations can be substantially reduced or even terminated," Zhou said. "Notably, this process is totally reversible after removal of the light source."

With this method, researchers can regulate the activity of excitable cells in the nervous and cardiovascular systems. "Complementary to the photoactivatable Opto-CRAC system, the optoRGK toolkit provides a unique opportunity to switch off calcium signals in excitable cells," said Youjun Wang, PhD, a collaborator of this study from Beijing Normal University.

"Our novel optogenetic tools can be conveniently applied to control a wide range of physiological processes mediated by voltage-gated calcium channels in multiple biological systems," Zhou added. "While traditional voltage-gated calcium channel blockers lack reversibility, selectivity and tissue-specificity, optoRGK opens exciting opportunities to intervene in related physiological processes with unprecedented precision. We hope that these kinds of studies will eventually lead to new generation of optogenetic devices for curing cancer, cardiovascular and neurological diseases."

Media Contact

Tamim Choudhury
tchoudhury@tamhsc.edu
979-436-0619

http://www.tamu.edu 

Tamim Choudhury | EurekAlert!
Further information:
https://vitalrecord.tamhsc.edu/treating-cardiovascular-disorders-and-more-with-the-flip-of-a-switch/

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>