Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Treasure trove for research and therapy


They are termed adhesion G protein-coupled receptors. These receptors are involved in a wealth of vital functions in the body and therefore represent a promising target for drugs, yet relatively little is known about how they work. A new research unit is keen to change this.

Seeing, smelling, tasting, when the heart beats, when hormones do their job – during all these processes, and many others, important tasks are undertaken by a certain class of receptors, known as G protein-coupled receptors, or GPCRs for short.

Dr. Tobias Langenhan, head of the new DFG research unit “Elucidation of Adhesion-GPCR Signaling”.

Photo: Gunnar Bartsch

Hundreds of them are encoded in the human genome and sit on the surface of cells, where they receive signals, which they transfer to the cell interior. One indication of their importance is the fact that around half of all clinically approved drugs target these receptors and, in doing so, treat ailments as varied as, for example, hypertension, asthma, and Parkinson’s disease. So, from a scientific perspective, these receptors are “a treasure trove” for the development of new therapeutics.

The new research unit

Adhesion GPCRs form a sub-group of this receptor class. They are the focus of a new research unit that has now been approved by the German Research Foundation (DFG). Its spokesperson is the Würzburg medic and neurobiologist Dr. Tobias Langenhan.

The team includes scientists from the universities of Würzburg, Leipzig, Mainz, Erlangen-Nuremberg, and the Amsterdam Medical Center of the University of Amsterdam. By pooling their expertise in this field it is hoped that they will break new ground together. The DFG will be contributing around two million euros to fund the project over the next three years; an extension of a further three years is possible.

“What do they feel? How do they translate stimuli into a cellular response? And what happens when they are missing?” The scientists involved in the research unit want to find answers to these three questions over the next few years, explains Tobias Langenhan.

There are 33 varieties of adhesion GPCRs in the human body. They are important control centers in the brain and in the immune system; they play a significant role in the development of the heart and blood vessels as well as in other processes. And, although they are among the oldest and largest surface proteins in humans, the way in which they work is still largely a mystery.

When receptors are missing

“We now know a little about what happens when they are missing in certain areas of the body,” says Langenhan. This can cause, for example, the development of Usher syndrome, a common congenital hearing and visual impairment. Or it may lead to a developmental disorder of the brain – “bilateral frontoparietal polymicrogyria”.

Here the cortex folds itself into countless flat gyri; the afflicted suffer from seizures, movement disorders, and retarded mental development. Tumor cells, too, feature faulty adhesion GPCRs, though a causal relationship has yet to be proven in this case. “Fundamental principles of the way in which these receptors work are not yet understood,” says Langenhan. And this is where the work of the new research unit will begin.

Physiology, genetics, pharmacology, biochemistry, structural biology, and pathology: a wide variety of disciplines are represented in the new research unit and will all play their part in shedding light on the signaling behavior of adhesion GPCRs. Developing new drugs is not the primary objective.

“What we do is basic research,” explains Tobias Langenhan. Not until the mechanisms in healthy people are understood can well-founded conclusions be drawn about the pathology, he says. That is not to say, however, that the scientists are completely ignoring any relevance to patients. Langenhan can well envisage the involvement of clinical partners in the potential second period of funding if it goes ahead.

Personal profile

Tobias Langenhan (36) studied medicine at the University of Würzburg from 1997 to 2004. In 2006, he received a doctorate from the Institute of Anatomy with a thesis in neuroanatomy. From 2004 to 2009, Langenhan studied for a Master’s degree and a doctorate at the University of Oxford on a full scholarship from the Wellcome Trust. It was during his doctorate there that he first turned his attention to the way in which adhesion GPCRs work. Since 2009, he has acted as group leader at the Department of Physiology (focus on neurophysiology) at the University of Würzburg.


Dr. Tobias Langenhan, MSc DPhil (Oxon), T: +49 (0)931 31-88681,

DFG research units
A research unit is made up of a team of researchers working together on a research project, according to the DFG’s website. The objective behind supporting research units is to help provide the necessary staff and material resources for close collaboration, usually over six years. Research units often contribute to the establishment of new research directions.

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>