Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transcriptomics identifies genes & signaling pathways that may regulate Neurodegeneration

12.02.2015

Massive elimination of neurons is a critical aspect of normal nervous system development but also represents a defining feature of neurodegenerative pathologies, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis.

Although the molecular events that trigger neuronal death in each of these neurodegenerative diseases is distinct, the downstream apoptotic process through which neurons die in these pathologies are thought to share commonalities to each other, as well as to developmentally-regulated neuronal death.

Identifying genes that promote or prevent neuronal death would thus be an important step in understanding both developmentally-regulated neuronal death as well as the mechanisms underlying degenerative brain disorders. Scientists at Southern Methodist University, led by Professor and Chair of Biological Sciences Santosh D'Mello, have used RNA-Seq to conduct transcriptome profiling of gene expression changes in dying neurons.

This study, reported in the February 2015 issue of Experimental Biology and Medicine, utilized cultured cerebellar granule neurons, one of the most widely used models to study neuronal death. Other labs have used DNA microarray analysis to characterize gene expression changes in this model. However, microarray analysis is only capable of measuring the status of known transcripts, and expression of low-abundance mRNAs is often not detected by the hybridization-based approach.

While changes in the expression of several hundred genes were detected by microarray analyses, in the study by D'Mello and colleagues over 4,000 genes displayed significantly altered expression. Most affected were genes functioning in cell death and survival regulation, cell growth and proliferation and molecular transport. A large number of genes involved in nervous system development and function were also deregulated.

Analysis of signaling pathways that were affected pointed to changes in mitochondrial function and oxidative phosphorylation, consistent with a number of studies showing perturbations of these pathways in neurodegenerative disorders. A large number of genes previously not linked to developmentally-regulated neuronal death or neurodegenerative pathologies were identified.

"This is a first step in the identification of novel but important players regulating neuronal survival and death" said Dr. D'Mello. "Future studies will determine to what extent the novel genes identified in our study are involved in regulating neuronal death, including death associated with neurodegenerative disease."

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "D'Mello and colleagues have performed a transcriptomic study, utilizing RNA-Seq, to identify transcripts that are changed in expression in dying neurons. Utilizing this very sensitive technique they were able to demonstrate significant changes in the expression of over 4000 genes. This study opens the door to future studies on which of these many genes are functionally involved in normal neuronal death and that associated with various neurodegenerative disorders.

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903. Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit http://www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.sagepub.com/.

Media Contact

Dr. Santosh R. D'Mello
sdmello@smu.edu

http://www.sebm.org/ 

Dr. Santosh R. D'Mello | EurekAlert!

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>