Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transcriptomics identifies genes & signaling pathways that may regulate Neurodegeneration

12.02.2015

Massive elimination of neurons is a critical aspect of normal nervous system development but also represents a defining feature of neurodegenerative pathologies, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis.

Although the molecular events that trigger neuronal death in each of these neurodegenerative diseases is distinct, the downstream apoptotic process through which neurons die in these pathologies are thought to share commonalities to each other, as well as to developmentally-regulated neuronal death.

Identifying genes that promote or prevent neuronal death would thus be an important step in understanding both developmentally-regulated neuronal death as well as the mechanisms underlying degenerative brain disorders. Scientists at Southern Methodist University, led by Professor and Chair of Biological Sciences Santosh D'Mello, have used RNA-Seq to conduct transcriptome profiling of gene expression changes in dying neurons.

This study, reported in the February 2015 issue of Experimental Biology and Medicine, utilized cultured cerebellar granule neurons, one of the most widely used models to study neuronal death. Other labs have used DNA microarray analysis to characterize gene expression changes in this model. However, microarray analysis is only capable of measuring the status of known transcripts, and expression of low-abundance mRNAs is often not detected by the hybridization-based approach.

While changes in the expression of several hundred genes were detected by microarray analyses, in the study by D'Mello and colleagues over 4,000 genes displayed significantly altered expression. Most affected were genes functioning in cell death and survival regulation, cell growth and proliferation and molecular transport. A large number of genes involved in nervous system development and function were also deregulated.

Analysis of signaling pathways that were affected pointed to changes in mitochondrial function and oxidative phosphorylation, consistent with a number of studies showing perturbations of these pathways in neurodegenerative disorders. A large number of genes previously not linked to developmentally-regulated neuronal death or neurodegenerative pathologies were identified.

"This is a first step in the identification of novel but important players regulating neuronal survival and death" said Dr. D'Mello. "Future studies will determine to what extent the novel genes identified in our study are involved in regulating neuronal death, including death associated with neurodegenerative disease."

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "D'Mello and colleagues have performed a transcriptomic study, utilizing RNA-Seq, to identify transcripts that are changed in expression in dying neurons. Utilizing this very sensitive technique they were able to demonstrate significant changes in the expression of over 4000 genes. This study opens the door to future studies on which of these many genes are functionally involved in normal neuronal death and that associated with various neurodegenerative disorders.

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903. Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit http://www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.sagepub.com/.

Media Contact

Dr. Santosh R. D'Mello
sdmello@smu.edu

http://www.sebm.org/ 

Dr. Santosh R. D'Mello | EurekAlert!

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>