Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To keep or not to keep a hookworm

30.03.2016

UC Riverside-led research team identifies key protein that by protecting the body from damage in hookworm infections ensures benefits outweigh risks

Researchers in the School of Medicine at the University of California, Riverside have identified an immune protein in mice that is quickly triggered in the body following infection and serves to protect the body's tissues. Called "RELMalpha," this protein, whose homologue in humans is called "resistin," is responsible more for protecting the body than attacking the parasite.


Immunofluorescent image shows cross-section of hookworm (red) invading the small intestine (blue) leading to recruitment of macrophages (green).

Credit: Jay Patel, Nair lab, UC Riverside.

As mammals, we have an immune system to fight pathogens that attack us. Because pathogens do us damage, the body naturally releases proteins to kill the pathogens. But these cytokines--proteins made by immune cells--can also attack the body's tissues and damage them. RELMalpha, made by mice to dampen the immune system response, focuses on protecting the body's tissues. Resistin is expected to function similarly in humans.

"This is counterintuitive," said Meera G. Nair, Ph.D., an assistant professor of biomedical sciences, whose lab led the research that focused on the hookworm as the parasite of study. "We think the immune system is all about killing the parasite. But that's not what RELMalpha sets out to do. It is important evidence that mammals have regulatory systems in place not to kill pathogens, but instead to dampen the immune response because this, overall, benefits the host."

Study results appear in the April 1 issue of the journal Infection and Immunity.

Hooked on worms

In her career, Nair has done considerable research on hookworms, soil-transmitted nematodes that infect an estimated 2 billion people worldwide--mostly in developing countries where sanitation is poor and people are often barefoot. After penetrating the skin, the hookworm--about 5 millimeters in length--travels from the bloodstream to the lung. Nair explained that the hookworm proceeds to damage the lung, the first organ it infects. When blood vessels break and hemorrhaging follows, the hookworm feeds on the blood (it cannot, however, survive in blood). When it is coughed up and swallowed, it then travels to the gut, the second organ it infects.

"The hookworm could not reach the gut if it didn't use the lung," Nair said. "In the gut, it releases thousands of eggs, which then go into the feces, completing the cycle. This is why infection is prevalent where lack of sanitation is also common, where, say, open defecation is practiced."

For their lab experiments, Nair's team used mice that were genetically deficient, meaning they lacked RELMalpha. The researchers then infected the mice with hookworms. The mice killed the worms but did not survive themselves, being unable to recover from the worm infection, which damaged their lungs.

When such genetically deficient mice were given a low dose of worms, the mice managed to kill the worms faster. But they incurred damage to their bodies. Were the mice to have RELMalpha, the researchers posit, their lung tissues would have been better protected.

Death versus worm burdens

"If you had a choice between having a parasite in your body or you dying from trying to kill it, you would choose to have the parasite live in your body," Nair explained. "Worm parasites are exceptionally good at that. They live with us for long periods without causing much damage. Essentially, a partnership is set up so that both the host and worm benefit. Worms, one of the most complex pathogens, have evolved to be the ideal parasite. They do not want you to die because that would mean they could not survive either. At doing this balancing act between inflammation and immunity, worms may be better than all other pathogens."

Nair noted that there are no vaccines available to fight worm infections. Unfortunately, distributing drugs for a disease that infects billions of people is costly and unfeasible, she said.

"RELMalpha appears to be the pivot on which the balance between inflammation and immunity is struck," she said. "This is likely true in humans as well, where resistin, the human equivalent of RELMalpha, is highly expressed in worm infections." The lab's next focus will be to investigate human resistin in this context.

###

Nair was joined in the research by Gang Chen (first author of the research paper), a principal scientist; Spencer H. Wang, a junior specialist at UCR; Jessica C. Jang, a UCR graduate student; and Justin I. Odegaard, a pathologist at UC San Francisco.

Nair was funded by a grant from the National Institutes of Health, specifically the National Institute of Allergy and Infectious Diseases. She has been invited to speak at the prestigious Gordon Research Conference on Tropical Infectious Diseases, which will be held next year in Galveston, Texas.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Media Contact

Iqbal Pittalwala
iqbal@ucr.edu
951-827-6050

 @UCRiverside

http://www.ucr.edu 

Iqbal Pittalwala | EurekAlert!

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>