Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Throwing molecular wrench into gene control machine leads to 'melting away' of leukemia

09.01.2018

Cancer researchers today announced they have developed a way of sidelining one of the most dangerous "bad actors" in leukemia. Their approach depends on throwing a molecular wrench into the gears of an important machine that sets genes into motion, enabling cancer cells to proliferate.

In tests in mice, the newly discovered method has resulted in what the researchers describe as the "melting away" of aggressive blood cancers while at the same time having no harmful impact on the function of normal cells.


By inducing the expression of a small peptide in mouse models of human AML, CSHL researchers were able to prevent MYB, a major cancer enabler, from promoting cancer growth. Imaged 9, 11, and 13 days following introduction of the peptide, mice from the experiments show dramatic differences in outcome. In the left two columns, control (far left) and treated mice in which the peptide was not activated move from pervasive cancer (blue bioluminescence) to terminal (red). Some of the mice did not survive 13 days (blank panel). In contrast, the two right columns show control mice (poor outcomes) and treated mice with the peptide activated (far right). In the latter, in the far right column, one sees the cancer melt away, leaving the treated mice nearly cancer-free.

Credit: Vakoc Lab, CSHL

The new research by Associate Professor Christopher Vakoc and colleagues at Cold Spring Harbor Laboratory (CSHL) is part of a broader effort in Vakoc's lab to fight the often fatal acute myeloid leukemia (AML) by disabling parts of the machinery in cells - called the transcriptional machinery -- that determines when genes are switched on and off.

Central players in this machinery are proteins called transcription factors, thousands of which are active in regulating genes across our chromosomes. The question addressed in the new research, published today in Cancer Cell, was how to target one of the most troublesome transcription factors, called MYB. It's an oncogenic, or cancer-inducing, transcription factor that enables cells to blow through the stop signs that normally prevent out-of-control growth.

"MYB is a dream target in cancer research," says Vakoc, "because it's involved in so many cancers; in leukemia it's special because we know from previous research that by targeting MYB you can get AML not just to stop growing but actually to regress." Deactivating MYB in cancer has been a goal of many research labs..

Yali Xu, a Ph.D. student in the Vakoc lab leading the study, discovered how to selectively take MYB out of the picture in leukemia by throwing a molecular wrench into the mechanism that the transcription factor normally activates. First, the team discovered that MYB activates gene expression by docking at a giant gene-"co-activation" protein called TFIID (pronounced TF-two-D). Next, the they found a tiny weak spot on the massive protein. This Achilles' heel, called TAF12, is a small, nub-like projection. The team then tricked MYB into binding to short protein fragments, or peptides, that are shaped exactly like the place on TAF12 where MYB binds when it is promoting leukemia.

A major achievement in the study was generating this peptide, which acts like a decoy. Experiments in mice that model human AML showed that the peptide finds and binds MYB, preventing it from engaging the TFIID co-activator. This resulted in mouse leukemias shrinking in size by some 80% without causing harm to healthy cells.

While the peptide is not itself a drug, Vakoc says its action could be replicated by a drug. "It's a concept we're now discussing with the pharmaceutical industry. It is going to take lots of work before it can result in a medicine leukemia patients might take. But we're excited about this new approach, because MYB is such an important player in many cancers and until now has eluded efforts to selectively target it."

###

Funding: Cold Spring Harbor Laboratory NCI Cancer Center Support grant; Alex's Lemonade Stand Foundation; Forbeck Foundation; Pershing Square Sohn Cancer Research Alliance; V Foundation; Burroughs-Wellcome Fund Career Award; NIH/NCI; Leukemia & Lymphoma Society Scholar Award.

Citation: Xu, Y et al, "A TFIID-SAGA perturbation that targets MYB and suppresses acute myeloid leukemia." Published online in Cancer Cell January 8, 2017.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. Home to eight Nobel Prize winners, the private, not-for-profit Laboratory employs 1,100 people including 600 scientists, students and technicians. The Meetings & Courses Program annually hosts more than 12,000 scientists. The Laboratory's education arm also includes an academic publishing house, a graduate school and the DNA Learning Center with programs for middle and high school students and teachers. For more information, visit http://www.cshl.edu

Media Contact

Peter Tarr
tarr@cshl.edu
516-367-5055

 @cshl

http://www.cshl.edu 

Peter Tarr | EurekAlert!

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>