Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The radiation therapy of the future adjusts itself to the patient

10.02.2015

Together with physicians, other research groups, and industry partners, Fraunhofer MEVIS is developing software to optimize radiation therapy. The fifth clinical workshop to evaluate this software took place in Bremen on February 5 and 6.

Radiation therapy for cancer therapy usually lasts for several weeks. During this time, the situation of the patient changes often: bodyweight decreases, causing the tumor to shrink or change shape. As a result, the distribution of the radiation dose set at the beginning of the therapy is no longer optimal. In the worst case, the radiation can no longer fully hit the tumor, causing part of the radiation to reach and damage healthy tissue.


In the clinical workshops, scientists from Fraunhofer MEVIS are working together with physicians on the workflow and user experience of the joint radiation therapy software.

Fraunhofer MEVIS

To avoid such a scenario, doctors have to adjust the direction and dose of the radiation according to current conditions. Until now, this replanning has been a costly and time-consuming procedure. The software developed in the BMBF-funded (Federal Ministry of Education and Research) SPARTA project aims at accelerating this process, thus offering cheaper therapy progress.

Fraunhofer Institute for Medical Image Computing MEVIS has contributed fast and accurate method of transferring the original planning situation to the current patient condition. To make the program as practical as possible, the experts from SPARTA work closely with doctors from renowned cancer clinics.

At the beginning of every radiation therapy, doctors develop a detailed treatment plan based on CT imagery. This plan indicates the body areas that must be irradiated, as well as how often and with what dosage they must be treated. The goal is to completely destroy the tumor while sparing nearby tissue as much as possible. However, this cannot be achieved with a single radiation session. Patients might undergo daily therapy for a month to successfully fight the cancer.

“To ensure that the tumor is targeted as planned, doctors take routine control images of the patient,” explains MEVIS researcher Stefan Wirtz. “That way, they can also recognize whether the patient is lying accurately in the device.” Likewise, these control images help determine whether the tumor has shifted in the body due to a patient´s weight loss over the course of therapy. In such cases, healthy body areas can be accidentally damaged by moving into the radiation path. “When treating tumors in the oral and pharyngeal cavity, the salivary gland sometimes shifts into the radiation area and can become damaged,” says Wirtz’ colleague Stefan Kraß.

To avoid this and to adjust the radiation optimally, doctors must compare the original planning images with the most recent control images. “Often, the doctor must view old and new images and compare them mentally,” Stefan Wirtz explains. “However, our software can align both of them in a single image and transfer the contours of the radiation area.” As a result, doctors can quickly recognize whether the original contours still apply to the current situation. If not, the contours can easily be adjusted with the software tools. “Until now, replanning radiation therapy could take several hours,” says Stefan Kraß. “Our software can accelerate the process considerably.”

To make the software user-friendly, MEVIS experts exchange ideas with radiation therapists several times a year and discuss progress during joint workshops. Is the program easy to operate? Do the algorithms deliver the proper results? Are the software tools as practical as the clinicians desire? “The doctors participate regularly,” emphasizes Wirtz. “This assures that our software will satisfy the demands of the clinical routine.”

One of SPARTA´s clinical project partners, the Ludwig Maximilian University (LMU) in Munich, has already implemented the program for research purposes to evaluate its benefits. “In the current version, the quick contour transfer generates very good re-contouring suggestions. The software will surely find its application in adaptive head and neck radiation therapy,” says LMU doctor Reinoud Nijhuis.

“When the project ends in March 2016, we want to present software that is by and large ready for practical use,” says Stefan Kraß, “and the software maturity achieved through close clinical collaboration might motivate the industry to want to market these results and address the necessary certification.”

The SPARTA project (Software Platform for Adaptive Multimodal Radio and Particle Therapy with Autarkic Extendibility) is funded by the German Federal Ministry of Education and Research (BMBF). It started on April 1, 2013 and will run for three years. The consortium encompasses ten partners, including research institutes, medical technology companies, and university clinics.

Weitere Informationen:

http://www.mevis.fraunhofer.de/en/news/press-release/article/the-radiation-thera...
http://www.projekt-sparta.de

Dr. Guido Prause | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>