Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The radiation therapy of the future adjusts itself to the patient

10.02.2015

Together with physicians, other research groups, and industry partners, Fraunhofer MEVIS is developing software to optimize radiation therapy. The fifth clinical workshop to evaluate this software took place in Bremen on February 5 and 6.

Radiation therapy for cancer therapy usually lasts for several weeks. During this time, the situation of the patient changes often: bodyweight decreases, causing the tumor to shrink or change shape. As a result, the distribution of the radiation dose set at the beginning of the therapy is no longer optimal. In the worst case, the radiation can no longer fully hit the tumor, causing part of the radiation to reach and damage healthy tissue.


In the clinical workshops, scientists from Fraunhofer MEVIS are working together with physicians on the workflow and user experience of the joint radiation therapy software.

Fraunhofer MEVIS

To avoid such a scenario, doctors have to adjust the direction and dose of the radiation according to current conditions. Until now, this replanning has been a costly and time-consuming procedure. The software developed in the BMBF-funded (Federal Ministry of Education and Research) SPARTA project aims at accelerating this process, thus offering cheaper therapy progress.

Fraunhofer Institute for Medical Image Computing MEVIS has contributed fast and accurate method of transferring the original planning situation to the current patient condition. To make the program as practical as possible, the experts from SPARTA work closely with doctors from renowned cancer clinics.

At the beginning of every radiation therapy, doctors develop a detailed treatment plan based on CT imagery. This plan indicates the body areas that must be irradiated, as well as how often and with what dosage they must be treated. The goal is to completely destroy the tumor while sparing nearby tissue as much as possible. However, this cannot be achieved with a single radiation session. Patients might undergo daily therapy for a month to successfully fight the cancer.

“To ensure that the tumor is targeted as planned, doctors take routine control images of the patient,” explains MEVIS researcher Stefan Wirtz. “That way, they can also recognize whether the patient is lying accurately in the device.” Likewise, these control images help determine whether the tumor has shifted in the body due to a patient´s weight loss over the course of therapy. In such cases, healthy body areas can be accidentally damaged by moving into the radiation path. “When treating tumors in the oral and pharyngeal cavity, the salivary gland sometimes shifts into the radiation area and can become damaged,” says Wirtz’ colleague Stefan Kraß.

To avoid this and to adjust the radiation optimally, doctors must compare the original planning images with the most recent control images. “Often, the doctor must view old and new images and compare them mentally,” Stefan Wirtz explains. “However, our software can align both of them in a single image and transfer the contours of the radiation area.” As a result, doctors can quickly recognize whether the original contours still apply to the current situation. If not, the contours can easily be adjusted with the software tools. “Until now, replanning radiation therapy could take several hours,” says Stefan Kraß. “Our software can accelerate the process considerably.”

To make the software user-friendly, MEVIS experts exchange ideas with radiation therapists several times a year and discuss progress during joint workshops. Is the program easy to operate? Do the algorithms deliver the proper results? Are the software tools as practical as the clinicians desire? “The doctors participate regularly,” emphasizes Wirtz. “This assures that our software will satisfy the demands of the clinical routine.”

One of SPARTA´s clinical project partners, the Ludwig Maximilian University (LMU) in Munich, has already implemented the program for research purposes to evaluate its benefits. “In the current version, the quick contour transfer generates very good re-contouring suggestions. The software will surely find its application in adaptive head and neck radiation therapy,” says LMU doctor Reinoud Nijhuis.

“When the project ends in March 2016, we want to present software that is by and large ready for practical use,” says Stefan Kraß, “and the software maturity achieved through close clinical collaboration might motivate the industry to want to market these results and address the necessary certification.”

The SPARTA project (Software Platform for Adaptive Multimodal Radio and Particle Therapy with Autarkic Extendibility) is funded by the German Federal Ministry of Education and Research (BMBF). It started on April 1, 2013 and will run for three years. The consortium encompasses ten partners, including research institutes, medical technology companies, and university clinics.

Weitere Informationen:

http://www.mevis.fraunhofer.de/en/news/press-release/article/the-radiation-thera...
http://www.projekt-sparta.de

Dr. Guido Prause | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>