Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The key to self-destruction: New signaling pathway for cell death identified in leukemia

14.07.2016

When adults develop blood cancer, they are frequently diagnosed with what is referred to as acute myeloid leukemia. The disease is triggered by pathological alterations of bone marrow cells, in which, in addition, an important mechanism is out of action: these cells do not die when they are damaged. Researchers from the Technical University of Munich (TUM) have now discovered a molecular self-destruction mechanism that is suppressed in leukemia cells.

Leukemia involves pathological alterations in the body's hematopoietic system. In acute myeloid leukemia, it is specifically the bone marrow (Greek: myelos) that is affected. In a healthy body, different blood cells, which perform different functions in the blood, are formed from stem cells and what is referred to as progenitor cells in the bone marrow.


Ulrike Höckendorf and Dr. Philipp Jost studied in the journal "Cancer Cell", how leukemia cells suppress the cell-internal self-destruct mechanism. (Photo: Heddergott / TUM)

A genetic mutation can lead to alterations in stem cells and progenitor cells and turn them into leukemia-initiating cells, which are referred to as LICs for short. Like healthy progenitor cells, LICs multiply in the bone marrow. The genetic mutation, however, causes LICs to remain without function and prevents them from developing into mature blood cells, which ultimately leads to the repression of healthy hematopoiesis in the bone marrow and the onset of leukemia symptoms.

The most frequent genetic alterations in myeloid leukemia include mutations in the FLT3 gene. A team led by Dr. Philipp Jost from the Department of Hematology/Oncology at Klinikum rechts der Isar at the Technical University of Munich has now discovered that the effects of this gene on pathologically altered cells in a way provide certain indications for the treatment of the disease. The mutation causes a permanent activation of the FLT3 gene. As demonstrated by the scientists, this triggers inflammation-like stimuli in the cell, subjecting it to permanent stress.

Growth despite inflammation and damage

Under normal circumstances, such permanent inflammatory stimuli would trigger a program known as programmed cell death to replace damaged cells. This is a kind of self-destruction mechanism used by a cell to initiate its own destruction in a coordinated fashion and allow it to be replaced by a healthy one. “By contrast, LICs manage to grow and proliferate despite the inflammation and damage,” states Philipp Jost. “In our study, we have taken a closer look at the molecular causes of this resistance.”

To gain a better understanding of the research project described by the TUM scientists in the medical journal “Cancer Cell”, it is important to understand that cells have different ways of self-destructing. So far, the primary research focus in trying to ascertain why cancer cells survive longer than they should has been placed on a process called apoptosis. However, the fact that inflammatory processes occur in LICs pointed Philipp Jost and his colleagues in a different direction. Another way to initiate cell death is through what is referred to as necroptosis. Whereas, in apoptosis, a cell shrinks in a coordinated fashion, in necroptosis, a sudden destruction occurs, which releases the contents of the dying cell along with numerous messenger substances. This induces a strong inflammatory stimulus in the vicinity of the cell.

Cancer cells block activation of protein

Necroptosis is triggered by the activation of a protein called RIPK3, which subsequently initiates processes within the cell that lead to its death. The scientists used cell cultures to discover that leukemia takes a particularly severe course when RIPK3 is blocked inside LICs. This led to the cancer cells surviving particularly long, accompanied by their strong division and conversion to functionless blood cells (blasts). “We conclude from our findings that particularly aggressive cancer cells have the capacity to block RIPK3,” states Ulrike Höckendorf, lead author of the study. “Exactly how they accomplish this, however, remains to be investigated.”

Inducing cell death in a LIC by means of necroptosis has repercussions which also affect neighboring leukemia cells. The inflammatory stimuli triggered by the substances released during necroptosis are significantly stronger than the processes caused by the mutation in the FLT3 gene in a LIC. This inflammation has positive effects on the area surrounding the cell: induced by the messenger substances, neighboring leukemia cells begin to mature similar to healthy cells, leading to a less aggressive progression of leukemia.

With cell death blocked – apoptosis, too, is “neutralized” in many cancer cells – individual LICs manage to survive and proliferate even after chemotherapy or radiotherapy. “The new findings on the impact of the RIPK3 signaling pathway and the messenger substances released could open up new options for the treatment of leukemia,” states Philipp Jost. “If it were possible to artificially reproduce the effect of RIPK3 using medication, one could launch a targeted attack on leukemia cells.”

Contact

PD Dr. Philipp J. Jost
III. Medizinische Klinik und Poliklinik
Klinikum rechts der Isar
Technical University of Munich
Tel: +49 (89) 4140-5941
E-Mail: philipp.jost@tum.de

Original Publication

U. Höckendorf, Mo. Yabal, T. Herold, E. Munkhbaatar, S. Rott, S. Jilg, J. Kauschinger, G. Magnani, F. Reisinger, M. Heuser, H. Kreipe, K.Sotlar, T. Engleitner, R. Rad, W. Weichert, C. Peschel, J. Ruland, M. Heikenwalder, K. Spiekermann, J. Slotta-Huspenina, O. Groß, P. Jost. "RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells". Cancer Cell Vol. 30:1 (2016). DOI: 10.1016/j.ccell.2016.06.002

Dr. Ulrich Marsch | Technische Universität München
Further information:
http://www.tum.de

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>