Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Ebola mobile suitcase laboratory successfully tested in Guinea

06.11.2015

Scientists confirmed the efficiency of the novel Ebola detection method in field trials

An international team of researchers, including Ahmed Abd El Wahed, scientist at the University of Göttingen and the German Primate Center, has tested a new method for rapid diagnosis of Ebola in a field trial in Guinea.


The suitcase laboratory to detect ebola, innovated by Dr. Ahmed Abd El Wahed, infection researcher at the Göttingen University and at the German Primate Center.

Photo: Karin Tilch

The test procedure was carried out using a portable suitcase laboratory. The mobile suitcase lab is operated with solar power and enables simple on-site diagnostics in remote areas without the need of an equipped laboratory.

The new detection method, a recombinase polymerase amplification technique, shortly RPA, is based on the rapid identification of viral RNA in oral swabs of infected persons at 42 degrees. The comparison with two other currently available diagnostic methods revealed that the RPA is a very sensitive and rapid technique. An Ebola infection case was detected after 30 minutes. The results of the field study have been published in the current issue of the journal Eurosurveillance.

In the field study, which took place in Guinea from March to May 2015, oral swabs samples from persons suspected of dying of Ebola virus were analyzed. The scientists compared the new RPA with two variants of a currently available detection method, the so-called real-time polymerase chain reaction (PCR). "In the analysis we were able to determine two things", says Ahmed Abd El Wahed, currently in the Division of Microbiology and Animal Hygiene at the University of Göttingen and a guest scientist at the German Primate Center.

"First, RPA works very well with oral swab samples, which greatly simplifies sampling in the future, because it is faster and less complicated than sampling blood. Second, we have demonstrated that RPA is as sensitive and specific as the gold standard, but technically much more simpler than the real-time PCR methods."

Nine hundred twenty eight oral swab samples were tested with RPA, one hundred twenty samples were positive and eight hundred eight negative. The reference real-time PCR method gave exactly the same results. "That is a 100 per cent accuracy", says Abd El Wahed. "In addition, we observed during the test that RPA even works better than a currently commonly used WHO approved real-time PCR for the detection of Ebola."

Both the PCR and RPA-tests are based on the identification of viral RNA in the serum or oral swabs of infected persons. In contrast to the real-time PCR, the RPA reagent can be shipped, stored and used at ambient temperature of Africa (up to 38 degrees), which makes them cold chain independent. After 30 minutes, the detection of Ebola with RPA is possible. In contrast, the real-time PCR usually takes several hours. This complicates the use of the method in remote areas. "In order to better control an Ebola epidemic, we must be able to prove infections on-site as early as possible", says Abd El Wahed.

In a previous project, Abd El Wahed, Manfred Weidmann and Frank Hufert of the former Department of Virology of the University Medical Center Göttingen (UMG) developed the laboratory suitcase. It now also contains all the necessary reagents and equipment needed for the Ebola virus detection by RPA and works up to 16 hours with solar power. A mobile glove box provides additional protection against infection with contaminated sample material.

"The mobile diagnostic kit facilitates detection of Ebola and other infectious diseases directly in the crisis areas", says Ahmed Abd El Wahed. "With the field study, we could now also demonstrate the effectiveness of the new tool. Speed, accuracy and ease of use are three important criteria that we were able to achieve with the new method. Thus, the procedure could contribute decisively to the management of future Ebola crises."

In future, the diagnostic kit is also to be used for the detection of other human and veterinary infections. For example, paratuberculosis, Dengue virus, Chikungunya virus and Rift Valley fever virus.

The project was among six projects funded by the British Wellcome Trust program "Research for Health in Humanitarian Crisis (R2HC)". The study was led by the Pasteur Institute Dakar in Senegal and carried out in collaboration with the German Primate Center, the Robert Koch Institute in Berlin, the University of Stirling in Scotland, TwistDX, UK, the Laboratory for Hemorrhagic fever of Guinea at Donka hospital and the National Public Health Institute in Conakry, Guinea.

Original publication

Faye O, Faye O, Soropogui Bé, Patel P, El Wahed AA, Loucoubar C, Fall G, Kiory D, Magassouba N’F, Keita S, Kondé MK, Diallo AA, Koivogui L, Karlberg H, Mirazimi A, Nentwich O, Piepenburg O, Niedrig M, Weidmann M, Sall AA. (2015): Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015. Eurosurveillance 20(44):pii=30053. DOI: dx.doi.org/10.2807/1560-7917.ES.2015.20.44.30053

Contact

Dr. Ahmed Abd El Wahed
Division of Microbiology and Animal Hygiene
Georg August University Göttingen
Phone: +49 551 3913-958
Email: abdelwahed@gwdg.de

Dr. Sylvia Siersleben
Public Relations
German Primate Center
Phone: +49 551 3851-163
Email: ssiersleben@dpz.eu


The German Primate Center (DPZ) – Leibniz Institute for Primate Research conducts biological and biomedical research on and with primates in the fields of infection research, neuroscience and primate biology. The DPZ maintains four field stations in the tropics and is the reference and service center for all aspects of primate research. The DPZ is one of 89 research and infrastructure facilities of the Leibniz Association.

Weitere Informationen:

http://www.dpz.eu/en/home.html - Website German Primate Center
http://medien.dpz.eu/webgate/keyword.html?lang=en&currentContainerId=3001
http://www.dpz.eu/en/unit/infektionsmodelle/about-us.html - Unit of Infection Models, German Primate Center
https://www.uni-goettingen.de/en/38095.html - Division of Microbiology and Animal Hygiene, Göttingen University

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Further reports about: Ebola virus Hygiene Leibniz-Institut infections primate solar power

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>