Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The brain is not as cramped as we thought

11.08.2015

Using an innovative method, EPFL scientists show that the brain is not as compact as we have thought all along.

To study the fine structure of the brain, including its connections between neurons, the synapses, scientists must use electron microscopes. However, the tissue must first be fixed to prepare it for this high magnification imaging method.


This image shows two models of brain tissue reconstructed from serial EM images. The purple one is cryo-fixed, the brown one chemically fixed.

Credit: Graham Knott/EPFL

This process causes the brain to shrink; as a result, microscope images can be distorted, e.g. showing neurons to be much closer than they actually are. EPFL scientists have now solved the problem by using a technique that rapidly freezes the brain, preserving its true structure. The work is published in eLife.

The shrinking brain

Recent years have seen an upsurge of brain imaging, with renewed interest in techniques like electron microscopy, which allows us to observe and study the architecture of the brain in unprecedented detail. But at the same time, they have also revived old problems associated with how this delicate tissue is prepared before images can be collected.

Typically, the brain is fixed with stabilizing agents, such as aldehydes, and then encased, or embedded, in a resin. However, it has been known since the mid-sixties that this preparation process causes the brain to shrink by at least 30 percent. This in turn, distorts our understanding of the brain's anatomy, e.g. the actual proximity of neurons, the structures of blood vessels etc.

The freezing brain

A study by Graham Knott at EPFL, led by Natalya Korogod and working with Carl Petersen, has successfully used an innovative method, called "cryofixation", to prevent brain shrinkage during the preparation for electron microscopy. The method, whose roots go back to 1965, uses jets of liquid nitrogen to "snap-freeze" brain tissue down to -90oC, within milliseconds. The brain tissue here was mouse cerebral cortex.

The rapid freezing method is able to prevent the water in the tissue from forming crystals, as it would do in a regular freezer, by also applying very high pressures. Water crystals can severely damage the tissue by rupturing its cells. But in this high-pressure freezing method, the water turns into a kind of glass, preserving the original structures and architecture of the tissue.

The next step is to embed the frozen tissue in resin. This requires removing the glass-water and replacing it first with acetone, which is still a liquid at the low temperatures of cryofixation, and then, over a period of days, with resin; allowing it to slowly and gently push out the glassified water from the brain.

The real brain

After the brain was cryofixed and embedded, it was observed and photographed in using 3D electron microscopy. The researchers then compared the cryofixed brain images to those taken from a brain fixed with an "only chemical" method.

The analysis showed that the chemically fixed brain was much smaller in volume, showing a significant loss of extracellular space - the space around neurons. In addition, supporting brain cells called "astrocytes", seemed to be less connected with neurons and even blood vessels in the brain. And finally, the connections between neurons, the synapses, seemed significantly weaker in the chemically-fixed brain compared to the cryofixed one.

The researchers then compared their measurements of the brain to those calculated in functional studies - studies that measure the time it takes for a molecule to travel across that brain region. To the researchers' surprise, the data matched, adding even more evidence that cryofixation preserves the real anatomy of the brain.

"All this shows us that high-pressure cryofixation is a very attractive method for brain imaging," says Graham Knott. "At the same time, it challenges previous imaging efforts, which we might have to re-examine in light of new evidence." His team is now aiming to use cryofixation on other parts of the brain and even other types of tissue.

###

This work was funded by the Swiss National Science Foundation.

Reference

Korogod N, Petersen C, Knott G. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. eLife 11 August 2015. DOI: http://dx.doi.org/10.7554/eLife.05793

Media Contact

Nik Papageorgiou
n.papageorgiou@epfl.ch
41-216-932-105

 @EPFL_en

http://www.epfl.ch/index.en.html 

Nik Papageorgiou | EurekAlert!

Further reports about: EPFL Polytechnique blood vessels brain tissue crystals electron microscopy neurons

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>